Skip to content

YOLOv12: Attention-Centric Real-Time Object Detectors

License

Notifications You must be signed in to change notification settings

roboflow/yolov12

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv12

YOLOv12: Attention-Centric Real-Time Object Detectors

Yunjie Tian1, Qixiang Ye2, David Doermann1

1 University at Buffalo, SUNY, 2 University of Chinese Academy of Sciences.


Comparison with popular methods in terms of latency-accuracy (left) and FLOPs-accuracy (right) trade-offs

arXiv Hugging Face Demo Open In Colab deploy

Updates

Abstract Enhancing the network architecture of the YOLO framework has been crucial for a long time but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms.

YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters.

Main Results

Model size
(pixels)
mAPval
50-95
Speed
T4 TensorRT10
params
(M)
FLOPs
(G)
YOLO12n 640 40.6 1.64 2.6 6.5
YOLO12s 640 48.0 2.61 9.3 21.4
YOLO12m 640 52.5 4.86 20.2 67.5
YOLO12l 640 53.7 6.77 26.4 88.9
YOLO12x 640 55.2 11.79 59.1 199.0

Installation

wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
conda create -n yolov12 python=3.11
conda activate yolov12
pip install -r requirements.txt
pip install -e .

Validation

yolov12n yolov12s yolov12m yolov12l yolov12x

from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.val(data='coco.yaml', save_json=True)

Training

from ultralytics import YOLO

model = YOLO('yolov12n.yaml')

# Train the model
results = model.train(
  data='coco.yaml',
  epochs=600, 
  batch=256, 
  imgsz=640,
  scale=0.5,  # S:0.9; M:0.9; L:0.9; X:0.9
  mosaic=1.0,
  mixup=0.0,  # S:0.05; M:0.15; L:0.15; X:0.2
  copy_paste=0.1,  # S:0.15; M:0.4; L:0.5; X:0.6
  device="0,1,2,3",
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()

Prediction

from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.predict()

Export

from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.export(format="engine", half=True)  # or format="onnx"

Demo

python app.py
# Please visit http://127.0.0.1:7860

Acknowledgement

The code is based on ultralytics. Thanks for their excellent work!

Citation

@article{tian2025yolov12,
  title={YOLOv12: Attention-Centric Real-Time Object Detectors},
  author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
  journal={arXiv preprint arXiv:2502.12524},
  year={2025}
}

About

YOLOv12: Attention-Centric Real-Time Object Detectors

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Other 0.4%