Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[IR] Support safetensors in tensor adapters #1933

Open
wants to merge 8 commits into
base: main
Choose a base branch
from

Conversation

justinchuby
Copy link
Collaborator

@justinchuby justinchuby commented Nov 5, 2024

Load safetensors as numpy arrays. It is actually incredibly easy and we are able to reuse the ir.Tensor implementation because the numpy array loaded by safetensors is memory mapped. We can use it as a normal numpy array without memory constraints.

TODO

  • Add tests
  • Verify bfloat16/fp8 support

@justinchuby justinchuby added the topic: IR Intermediate representation label Nov 5, 2024
Copy link

codecov bot commented Nov 5, 2024

❌ 13 Tests Failed:

Tests completed Failed Passed Skipped
12239 13 12226 2049
View the full list of 3 ❄️ flaky tests
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime test_function_input_and_attribute_by_kwargs_out_of_order

Flake rate in main: 37.55% (Passed 5532 times, Failed 3326 times)

Stack Traces | 0.002s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:115: in test_function_input_and_attribute_by_kwargs_out_of_order
    self.assertEqual(add_with_alpha(alpha=3.0, other=2.0, this=1.0), 7.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime test_function_some_input_by_kwargs

Flake rate in main: 37.55% (Passed 5532 times, Failed 3326 times)

Stack Traces | 0.003s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:106: in test_function_some_input_by_kwargs
    self.assertEqual(add_with_alpha(1.0, other=2.0), 3.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime test_function_all_input_by_kwargs

Flake rate in main: 37.55% (Passed 5532 times, Failed 3326 times)

Stack Traces | 0.003s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:109: in test_function_all_input_by_kwargs
    self.assertEqual(add_with_alpha(this=1.0, other=2.0), 3.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').

To view individual test run time comparison to the main branch, go to the Test Analytics Dashboard

self._path = path
self._tensor_name = tensor_name

with safetensors.safe_open(path, framework="numpy") as f:

Check failure

Code scanning / lintrunner

MYPY/attr-defined Error

"safe_open" has no attribute "__enter__" To disable, use # type: ignore[attr-defined]
self._path = path
self._tensor_name = tensor_name

with safetensors.safe_open(path, framework="numpy") as f:

Check failure

Code scanning / lintrunner

MYPY/attr-defined Error

"safe_open" has no attribute "__exit__" To disable, use # type: ignore[attr-defined]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
topic: IR Intermediate representation
Projects
Development

Successfully merging this pull request may close these issues.

1 participant