Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add prime-factors exercise #90

Merged
merged 1 commit into from
Oct 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions config.json
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,14 @@
"prerequisites": [],
"difficulty": 4
},
{
"slug": "prime-factors",
"name": "Prime Factors",
"uuid": "b0b7b69d-be21-43d0-9e9a-6b8650112a96",
"practices": [],
"prerequisites": [],
"difficulty": 4
},
{
"slug": "rotational-cipher",
"name": "Rotational Cipher",
Expand Down
36 changes: 36 additions & 0 deletions exercises/practice/prime-factors/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Instructions

Compute the prime factors of a given natural number.

A prime number is only evenly divisible by itself and 1.

Note that 1 is not a prime number.

## Example

What are the prime factors of 60?

- Our first divisor is 2.
2 goes into 60, leaving 30.
- 2 goes into 30, leaving 15.
- 2 doesn't go cleanly into 15.
So let's move on to our next divisor, 3.
- 3 goes cleanly into 15, leaving 5.
- 3 does not go cleanly into 5.
The next possible factor is 4.
- 4 does not go cleanly into 5.
The next possible factor is 5.
- 5 does go cleanly into 5.
- We're left only with 1, so now, we're done.

Our successful divisors in that computation represent the list of prime factors of 60: 2, 2, 3, and 5.

You can check this yourself:

```text
2 * 2 * 3 * 5
= 4 * 15
= 60
```

Success!
19 changes: 19 additions & 0 deletions exercises/practice/prime-factors/.meta/config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"authors": [
"keiravillekode"
],
"files": {
"solution": [
"prime_factors.s"
],
"test": [
"prime_factors_test.c"
],
"example": [
".meta/example.s"
]
},
"blurb": "Compute the prime factors of a given natural number.",
"source": "The Prime Factors Kata by Uncle Bob",
"source_url": "https://web.archive.org/web/20221026171801/http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata"
}
35 changes: 35 additions & 0 deletions exercises/practice/prime-factors/.meta/example.s
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
.text
.globl factors

/* extern size_t factors(uint64_t* dest, uint64_t value); */
factors:
mov x2, x0 /* start of output */
mov x3, #2 /* candidate factor */

.search:
cmp x1, #1
beq .return

udiv x4, x1, x3 /* quotient */
msub x5, x3, x4, x1 /* remainder */
cbz x5, .factor

cmp x3, x4
bgt .last

add x3, x3, 1
b .search

.last:
mov x3, x1
mov x4, #1

.factor:
str x3, [x0], #8 /* store, post-increment */
mov x1, x4
b .search

.return:
sub x0, x0, x2 /* number of bytes output */
lsr x0, x0, #3 /* number of primes output */
ret
46 changes: 46 additions & 0 deletions exercises/practice/prime-factors/.meta/tests.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# This is an auto-generated file.
#
# Regenerating this file via `configlet sync` will:
# - Recreate every `description` key/value pair
# - Recreate every `reimplements` key/value pair, where they exist in problem-specifications
# - Remove any `include = true` key/value pair (an omitted `include` key implies inclusion)
# - Preserve any other key/value pair
#
# As user-added comments (using the # character) will be removed when this file
# is regenerated, comments can be added via a `comment` key.

[924fc966-a8f5-4288-82f2-6b9224819ccd]
description = "no factors"

[17e30670-b105-4305-af53-ddde182cb6ad]
description = "prime number"

[238d57c8-4c12-42ef-af34-ae4929f94789]
description = "another prime number"

[f59b8350-a180-495a-8fb1-1712fbee1158]
description = "square of a prime"

[756949d3-3158-4e3d-91f2-c4f9f043ee70]
description = "product of first prime"

[bc8c113f-9580-4516-8669-c5fc29512ceb]
description = "cube of a prime"

[7d6a3300-a4cb-4065-bd33-0ced1de6cb44]
description = "product of second prime"

[073ac0b2-c915-4362-929d-fc45f7b9a9e4]
description = "product of third prime"

[6e0e4912-7fb6-47f3-a9ad-dbcd79340c75]
description = "product of first and second prime"

[00485cd3-a3fe-4fbe-a64a-a4308fc1f870]
description = "product of primes and non-primes"

[02251d54-3ca1-4a9b-85e1-b38f4b0ccb91]
description = "product of primes"

[070cf8dc-e202-4285-aa37-8d775c9cd473]
description = "factors include a large prime"
36 changes: 36 additions & 0 deletions exercises/practice/prime-factors/Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
AS = aarch64-linux-gnu-as
CC = aarch64-linux-gnu-gcc

CFLAGS = -g -Wall -Wextra -pedantic -Werror
LDFLAGS =

ALL_LDFLAGS = -pie -Wl,--fatal-warnings

ALL_CFLAGS = -std=c99 -fPIE $(CFLAGS)
ALL_LDFLAGS += $(LDFLAGS)

C_OBJS = $(patsubst %.c,%.o,$(wildcard *.c))
AS_OBJS = $(patsubst %.s,%.o,$(wildcard *.s))
ALL_OBJS = $(filter-out example.o,$(C_OBJS) $(AS_OBJS) vendor/unity.o)

CC_CMD = $(CC) $(ALL_CFLAGS) -c -o $@ $<

all: tests
qemu-aarch64 -L /usr/aarch64-linux-gnu ./$<

tests: $(ALL_OBJS)
@$(CC) $(ALL_CFLAGS) $(ALL_LDFLAGS) -o $@ $(ALL_OBJS)

%.o: %.s
@$(AS) -o $@ $<

%.o: %.c
@$(CC_CMD)

vendor/unity.o: vendor/unity.c vendor/unity.h vendor/unity_internals.h
@$(CC_CMD)

clean:
@rm -f *.o vendor/*.o tests

.PHONY: all clean
5 changes: 5 additions & 0 deletions exercises/practice/prime-factors/prime_factors.s
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
.text
.globl factors

factors:
ret
157 changes: 157 additions & 0 deletions exercises/practice/prime-factors/prime_factors_test.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
#include "vendor/unity.h"

#include <stddef.h>
#include <stdint.h>

#define MAX_ARRAY_SIZE 100
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

extern size_t factors(uint64_t* dest, uint64_t value);

void setUp(void) {
}

void tearDown(void) {
}

void test_no_factors(void) {
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 1);
TEST_ASSERT_EQUAL_UINT(0U, size);
}

void test_prime_number(void) {
TEST_IGNORE();
const uint64_t expected[] = {2};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 2);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_another_prime_number(void) {
TEST_IGNORE();
const uint64_t expected[] = {3};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 3);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_square_of_a_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {3, 3};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 9);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_product_of_first_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {2, 2};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 4);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_cube_of_a_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {2, 2, 2};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 8);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_product_of_second_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {3, 3, 3};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 27);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_product_of_third_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {5, 5, 5, 5};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 625);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_product_of_first_and_second_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {2, 3};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 6);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_product_of_primes_and_nonprimes(void) {
TEST_IGNORE();
const uint64_t expected[] = {2, 2, 3};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 12);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_product_of_primes(void) {
TEST_IGNORE();
const uint64_t expected[] = {5, 17, 23, 461};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 901255);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_factors_include_a_large_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {11, 9539, 894119};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 93819012551);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_product_of_three_large_primes(void) {
TEST_IGNORE();
const uint64_t expected[] = {2077681, 2099191, 2101243};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 9164464719174396253);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

void test_one_very_large_prime(void) {
TEST_IGNORE();
const uint64_t expected[] = {4016465016163};
uint64_t actual[MAX_ARRAY_SIZE];
const size_t size = factors(actual, 4016465016163);
TEST_ASSERT_EQUAL_UINT(ARRAY_SIZE(expected), size);
TEST_ASSERT_EQUAL_UINT64_ARRAY(expected, actual, size);
}

int main(void) {
UNITY_BEGIN();
RUN_TEST(test_no_factors);
RUN_TEST(test_prime_number);
RUN_TEST(test_another_prime_number);
RUN_TEST(test_square_of_a_prime);
RUN_TEST(test_product_of_first_prime);
RUN_TEST(test_cube_of_a_prime);
RUN_TEST(test_product_of_second_prime);
RUN_TEST(test_product_of_third_prime);
RUN_TEST(test_product_of_first_and_second_prime);
RUN_TEST(test_product_of_primes_and_nonprimes);
RUN_TEST(test_product_of_primes);
RUN_TEST(test_factors_include_a_large_prime);
RUN_TEST(test_product_of_three_large_primes);
RUN_TEST(test_one_very_large_prime);
return UNITY_END();
}
Loading