Skip to content

Visualizing the the loss landscape of Fully-Connected Neural Networks

Notifications You must be signed in to change notification settings

andyw-0612/landscapeviz

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visualizing the Loss Landscape of Neural Networks

Application showcasing landscapeviz here

This repository is an implementation of the paper

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Goldstein. Visualizing the Loss Landscape of Neural Nets. NIPS, 2018.

This code was implemented in tensorflow 2.0. The authors also have an implementation using pytorch.

How to use

# 1. define model

model = tf.keras.Sequential([
	tf.keras.layers.Dense(10, activation=tf.nn.relu, input_shape=(4,)),  # input shape required
	tf.keras.layers.Dense(10, activation=tf.nn.relu),
	tf.keras.layers.Dense(3, activation=tf.nn.softmax)
])

model.compile("sgd", loss="sparse_categorical_crossentropy", metrics=['sparse_categorical_accuracy', 'categorical_hinge'])

# 2. get data
data = sklearn.datasets.load_iris()
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(data["data"], data["target"], test_size=0.25, random_state=seed)

scaler_x = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,+1)).fit(X_train)
X_train = scaler_x.transform(X_train)
X_test = scaler_x.transform(X_test)

# 3. train model
model.fit(X_train, y_train, batch_size=32, epochs=60, verbose=0)


# 4. build mesh and plot
landscapeviz.build_mesh(model, (X_train, y_train), grid_length=40, verbose=0)
landscapeviz.plot_contour(key="sparse_categorical_crossentropy")
landscapeviz.plot_3d(key="sparse_categorical_crossentropy")

About

Visualizing the the loss landscape of Fully-Connected Neural Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%