Extract datetimes, datetime ranges, and datetime lists from natural language text. Supports Python3+1
Install with pip using
pip install timefhuman
Then, find natural language dates and times in any text.
>>> from timefhuman import timefhuman
>>> timefhuman("How does 5p mon sound? Or maybe 4p tu?")
[datetime.datetime(2018, 8, 6, 17, 0), datetime.datetime(2018, 8, 7, 16, 0)]
The text can contain not only datetimes but also ranges of datetimes or lists of datetimes.
>>> timefhuman('3p-4p') # time range
(datetime.datetime(2018, 7, 17, 15, 0), datetime.datetime(2018, 7, 17, 16, 0))
>>> timefhuman('7/17 4PM to 7/17 5PM') # range of datetimes
(datetime.datetime(2018, 7, 17, 16, 0), datetime.datetime(2018, 7, 17, 17, 0))
>>> timefhuman('Monday 3 pm or Tu noon') # list of datetimes
[datetime.datetime(2018, 8, 6, 15, 0), datetime.datetime(2018, 8, 7, 12, 0)]
>>> timefhuman('7/17 4-5 or 5-6 PM') # list of ranges of datetimes!
[(datetime.datetime(2018, 7, 17, 16, 0), datetime.datetime(2018, 7, 17, 17, 0)),
(datetime.datetime(2018, 7, 17, 17, 0), datetime.datetime(2018, 7, 17, 18, 0))]
Durations are also supported.
>>> timefhuman('30 minutes') # duration
datetime.timedelta(seconds=1800)
>>> timefhuman('30-40 mins') # range of durations
(datetime.timedelta(seconds=1800), datetime.timedelta(seconds=2400))
>>> timefhuman('30 or 40m') # list of durations
[datetime.timedelta(seconds=1800), datetime.timedelta(seconds=2400)]
When possible, timefhuman will infer any missing information, using context from other datetimes.
>>> timefhuman('3-4p') # infer "PM" for "3"
(datetime.datetime(2018, 7, 17, 15, 0), datetime.datetime(2018, 7, 17, 16, 0))
>>> timefhuman('7/17 4 or 5 PM') # infer "PM" for "4" and infer "7/17" for "5 PM"
[datetime.datetime(2018, 7, 17, 16, 0), datetime.datetime(2018, 7, 17, 17, 0)]
>>> timefhuman('7/17, 7/18, 7/19 at 9') # infer "9a" for "7/17", "7/18"
[datetime.datetime(2018, 7, 17, 9, 0), datetime.datetime(2018, 7, 18, 9, 0),
datetime.datetime(2018, 7, 19, 9, 0)]
>>> timefhuman('3p -4p PDT') # infer timezone "PDT" for "3p"
(datetime.datetime(2018, 8, 4, 15, 0, tzinfo=pytz.timezone('US/Pacific')),
datetime.datetime(2018, 8, 4, 16, 0, tzinfo=pytz.timezone('US/Pacific')))
You can also use natural language descriptions of dates and times.
>>> timefhuman('next Monday')
datetime.datetime(2018, 8, 6, 0, 0)
>>> timefhuman('next next Monday')
datetime.datetime(2018, 8, 13, 0, 0)
>>> timefhuman('last Wednesday of December')
datetime.datetime(2018, 12, 26, 0, 0)
>>> timefhuman('afternoon')
datetime.datetime(2018, 8, 4, 15, 0)
See more examples in tests/test_e2e.py
.
For more configuration options, simply create a tfhConfig
object.
from timefhuman import tfhConfig
config = tfhConfig()
Return matched text: You can additionally grab the matched text from the input string. This is useful for modifying the input string, for example.
>>> config = tfhConfig(return_matched_text=True)
>>> timefhuman('We could maybe do 3 PM, if you still have time', config=config)
[('3 PM', datetime.datetime(2018, 8, 4, 15, 0))]
Change 'Now': You can configure the default date that timefhuman uses to fill in missing information. This would be useful if you're extracting dates from an email sent a year ago.
>>> config = tfhConfig(now=datetime.datetime(2018, 8, 4, 0, 0))
>>> timefhuman('upcoming Monday noon', config=config)
datetime.datetime(2018, 8, 6, 12, 0)
You can also set a default timezone, by again using the config's now
.
>>> config = tfhConfig(
... now=datetime.datetime(2018, 8, 4), tzinfo=pytz.timezone('US/Pacific'))
>>> timefhuman('Wed', config=config)
datetime.datetime(2018, 8, 8, 0, 0, tzinfo=pytz.timezone('US/Pacific'))
>>> timefhuman('Wed EST', config=config) # EST timezone in the input takes precedence
datetime.datetime(2018, 8, 8, 0, 0, tzinfo=pytz.timezone('US/Michigan'))
Use explicit information only: Say you only want to extract dates OR times. You don't want the library to infer information. You can disable most inference by setting infer_datetimes=False
. Instead of always returning a datetime, timefhuman will be able to return date or time objects, depending on what's provided.
>>> config = tfhConfig(infer_datetimes=False)
>>> timefhuman('3 PM', config=config)
datetime.time(15, 0)
>>> timefhuman('12/18/18', config=config)
datetime.date(2018, 12, 18)
Past datetimes: By default, datetimes are assumed to occur in the future, so if "3pm" today has already passed, the returned datetime will be for tomorrow. However, if datetimes are assumed to have occurred in the past (e.g., from an old letter, talking about past events), you can configure the direction.
>>> from timefhuman import Direction
>>> config = tfhConfig(direction=Direction.previous)
>>> timefhuman('3PM') # the default
datetime.datetime(2018, 8, 5, 15, 0)
>>> timefhuman('3PM', config=config) # changing direction
datetime.datetime(2018, 8, 4, 15, 0)
Here is the full set of supported configuration options:
@dataclass
class tfhConfig:
# Default to the next valid datetime or the previous one
direction: Direction = Direction.next
# Always return datetime objects. If no date, use now.date(). If no time, use midnight.
infer_datetimes: bool = True
# The 'current' datetime, used if infer_datetimes is True. Defaults to datetime.now().
now: datetime | None = None
# Return the matched text from the input string
return_matched_text: bool = False
# Return a single object instead of a list when there's only one match
return_single_object: bool = True
Install the development version.
$ pip install .e .[test] # for bash
$ pip install -e .\[test\] # for zsh
To run tests and simultaneously generate a coverage report, use the following commands:
$ py.test --cov
$ coverage html
$ open htmlcov/index.html