Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update random rain #2323

Merged
merged 5 commits into from
Jan 30, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ repos:
files: setup.py
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.9.3
rev: v0.9.4
hooks:
# Run the linter.
- id: ruff
Expand Down
62 changes: 29 additions & 33 deletions albumentations/augmentations/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -746,45 +746,41 @@ def add_rain(
drop_color: tuple[int, int, int],
blur_value: int,
brightness_coefficient: float,
rain_drops: list[tuple[int, int]],
rain_drops: np.ndarray,
) -> np.ndarray:
"""Adds rain drops to the image.
"""Optimized version using OpenCV line drawing."""
if not rain_drops.size:
return img.copy()

Args:
img (np.ndarray): Input image.
slant (int): The angle of the rain drops.
drop_length (int): The length of each rain drop.
drop_width (int): The width of each rain drop.
drop_color (tuple[int, int, int]): The color of the rain drops in RGB format.
blur_value (int): The size of the kernel used to blur the image. Rainy views are blurry.
brightness_coefficient (float): Coefficient to adjust the brightness of the image. Rainy days are usually shady.
rain_drops (list[tuple[int, int]]): A list of tuples where each tuple represents the (x, y)
coordinates of the starting point of a rain drop.
img = img.copy()

Returns:
np.ndarray: Image with rain effect added.
# Pre-allocate rain layer
rain_layer = np.zeros_like(img, dtype=np.uint8)

Reference:
https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
"""
img = img.copy()
for rain_drop_x0, rain_drop_y0 in rain_drops:
rain_drop_x1 = rain_drop_x0 + slant
rain_drop_y1 = rain_drop_y0 + drop_length

cv2.line(
img,
(rain_drop_x0, rain_drop_y0),
(rain_drop_x1, rain_drop_y1),
drop_color,
drop_width,
)
# Calculate end points correctly
end_points = rain_drops + np.array([[slant, drop_length]]) # This creates correct shape

# Stack arrays properly - both must be same shape arrays
lines = np.stack((rain_drops, end_points), axis=1) # Use tuple and proper axis

cv2.polylines(
rain_layer,
lines.astype(np.int32),
False,
drop_color,
drop_width,
lineType=cv2.LINE_4,
)

if blur_value > 1:
ternaus marked this conversation as resolved.
Show resolved Hide resolved
cv2.blur(rain_layer, (blur_value, blur_value), dst=rain_layer)

img = cv2.blur(img, (blur_value, blur_value)) # rainy view are blurry
image_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.float32)
image_hsv[:, :, 2] *= brightness_coefficient
cv2.add(img, rain_layer, dst=img)

return cv2.cvtColor(image_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB)
if brightness_coefficient != 1.0:
cv2.multiply(img, brightness_coefficient, dst=img, dtype=cv2.CV_8U)

return img


def get_fog_particle_radiuses(
Expand Down
45 changes: 25 additions & 20 deletions albumentations/augmentations/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -796,7 +796,7 @@ def apply(
img: np.ndarray,
slant: int,
drop_length: int,
rain_drops: list[tuple[int, int]],
rain_drops: np.ndarray,
**params: Any,
) -> np.ndarray:
non_rgb_error(img)
Expand All @@ -817,31 +817,36 @@ def get_params_dependent_on_data(
params: dict[str, Any],
data: dict[str, Any],
) -> dict[str, Any]:
slant = int(self.py_random.uniform(*self.slant_range))

height, width = params["shape"][:2]
area = height * width

# Simpler calculations, directly following Kornia
if self.rain_type == "drizzle":
num_drops = area // 770
drop_length = 10
num_drops = height // 4
elif self.rain_type == "heavy":
num_drops = width * height // 600
drop_length = 30
num_drops = height
elif self.rain_type == "torrential":
num_drops = area // 500
drop_length = 60
num_drops = height * 2
else:
drop_length = self.drop_length
num_drops = area // 600

rain_drops = []

for _ in range(num_drops): # If You want heavy rain, try increasing this
x = self.py_random.randint(slant, width) if slant < 0 else self.py_random.randint(0, max(width - slant, 0))
y = self.py_random.randint(0, max(height - drop_length, 0))

rain_drops.append((x, y))
num_drops = height // 3

# Fixed proportion for drop length (like Kornia)
drop_length = max(1, height // 8)

# Simplified slant calculation
slant = self.random_generator.integers(-width // 50, width // 50)

# Single random call for all coordinates
if num_drops > 0:
# Generate all coordinates in one call
coords = self.random_generator.integers(
low=[0, 0],
high=[width, height - drop_length],
size=(num_drops, 2),
dtype=np.int32,
)
rain_drops = coords
else:
rain_drops = np.empty((0, 2), dtype=np.int32)

return {"drop_length": drop_length, "slant": slant, "rain_drops": rain_drops}

Expand Down
131 changes: 131 additions & 0 deletions tests/functional/test_functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -2326,3 +2326,134 @@ def test_gaussian_illumination_sigma(sigma, expected_pattern):

if expected_pattern == "narrow":
assert diff > wide_diff # Narrow should have steeper falloff than wide



@pytest.mark.parametrize(
["img", "slant", "drop_length", "drop_width", "drop_color", "blur_value", "brightness_coefficient", "rain_drops", "expected_shape"],
[
# Test basic functionality with small image
(
np.zeros((10, 10, 3), dtype=np.uint8),
5,
3,
1,
(200, 200, 200),
3,
0.7,
np.array([(2, 2)]),
(10, 10, 3),
),
# Test with no rain drops
(
np.zeros((20, 20, 3), dtype=np.uint8),
5,
3,
1,
(200, 200, 200),
3,
0.7,
np.array([]).reshape(0, 2),
(20, 20, 3),
),
# Test with multiple rain drops
(
np.zeros((30, 30, 3), dtype=np.uint8),
-5,
5,
2,
(255, 255, 255),
5,
0.8,
np.array([(5, 5), (10, 10), (15, 15)]),
(30, 30, 3),
),
]
)
def test_add_rain_shape_and_type(
img, slant, drop_length, drop_width, drop_color, blur_value, brightness_coefficient, rain_drops, expected_shape
):
result = fmain.add_rain(
img, slant, drop_length, drop_width, drop_color, blur_value, brightness_coefficient, rain_drops
)
assert result.shape == expected_shape
assert result.dtype == np.uint8


@pytest.mark.parametrize("brightness_coefficient", [0.5, 0.7, 1.0])
def test_add_rain_brightness(brightness_coefficient):
"""Test that brightness coefficient correctly affects image brightness"""
img = np.full((20, 20, 3), 100, dtype=np.uint8)
rain_drops = np.array([(5, 5)])

result = fmain.add_rain(
img=img,
slant=5,
drop_length=3,
drop_width=1,
drop_color=(200, 200, 200),
blur_value=3,
brightness_coefficient=brightness_coefficient,
rain_drops=rain_drops,
)

# Convert to HSV to check brightness
original_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
result_hsv = cv2.cvtColor(result, cv2.COLOR_RGB2HSV)

if brightness_coefficient < 1.0:
# For darkening coefficients, brightness should decrease
assert np.mean(result_hsv[:, :, 2]) < np.mean(original_hsv[:, :, 2])
np.testing.assert_allclose(
np.mean(result_hsv[:, :, 2]) / np.mean(original_hsv[:, :, 2]),
brightness_coefficient,
rtol=0.1 # Allow 10% tolerance due to rounding and blur effects
)
else:
# For brightness_coefficient = 1.0, brightness might slightly increase
# due to bright rain drops and blur, but shouldn't change dramatically
np.testing.assert_allclose(
np.mean(result_hsv[:, :, 2]) / np.mean(original_hsv[:, :, 2]),
1.0,
rtol=0.1 # Allow 10% tolerance
)
ternaus marked this conversation as resolved.
Show resolved Hide resolved


def test_add_rain_drops_visibility():
"""Test that rain drops are actually visible in the output"""
img = np.zeros((20, 20, 3), dtype=np.uint8)
rain_drops = np.array([(5, 5)])
drop_color = (255, 255, 255)

result = fmain.add_rain(
img=img,
slant=0,
drop_length=5,
drop_width=1,
drop_color=drop_color,
blur_value=1, # Minimal blur to check drop visibility
brightness_coefficient=1.0, # No brightness change
rain_drops=rain_drops,
)

# Check if any pixels have the rain drop color
assert np.any(result > 0)


def test_add_rain_preserves_input():
"""Test that the function doesn't modify the input image"""
img = np.zeros((10, 10, 3), dtype=np.uint8)
img_copy = img.copy()

fmain.add_rain(
img=img,
slant=5,
drop_length=3,
drop_width=1,
drop_color=(200, 200, 200),
blur_value=3,
brightness_coefficient=0.7,
rain_drops=np.array([(5, 5)]),
ternaus marked this conversation as resolved.
Show resolved Hide resolved
)

np.testing.assert_array_equal(img, img_copy)