Skip to content

This repository contains the code for our CCIR 2021 paper, Cascading Commonsense Question Answering Method via Multi-Source Knowledge Fusion.

License

Notifications You must be signed in to change notification settings

Zaaachary/CSQA-MSKF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Model for Commonsense QA

Requirement

pip install pytorch
pip install transformers
pip install SentencePiece

Albert Baseline

model description

!python CODE/run_csqa_task.py\
    --task_name Origin_Albert_Baseline\
    --mission train\
    --seed 42\
    --fp16 0\
    --gpu_ids 0\
    --save_mode step\
    --print_step 500\
    --evltest_batch_size 12\
    --eval_after_tacc 0.78\
    --max_seq_len 128\
    --train_batch_size 2\
    --gradient_accumulation_steps 8\
    --learning_rate 2e-5\
    --num_train_epochs 10\
    --warmup_proportion 0.1\
    --weight_decay 0.1\
    --dataset_dir DATA\
    --result_dir  [YOUR OUTPUT]\
    --PTM_model_vocab_dir albert-xxlarge-v2\

MSKF Model

Paper: 基于多知识源融合的级联式常识问答方法

About

This repository contains the code for our CCIR 2021 paper, Cascading Commonsense Question Answering Method via Multi-Source Knowledge Fusion.

Resources

License

Stars

Watchers

Forks