Skip to content

HectorPenades/dataset_reiden_multishot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 

Repository files navigation

dataset_reiden_multishot

This repository contains a group of functions in C++ for training deep networks with Caffe:

  • dataset_reiden_multishot: generation of pairs from Re-Identification datasets with the division of the samples in train, validation and test sets for the multi-shot re-identification problem described in [1]. Additionally, the code allows several strategies for obtaining multiple images from one of the cameras.

  • Dataset used: PRID 2011

These functions follow a similar structure of the single-shot code: data_factory_from_reid, avalaible at https://github.com/magomezs/dataset_factory.

Citation

Please cite dataset_reiden_multishot in your publications if it helps your research:

José Héctor Penadés-Migallón, Re-identificación de personas a partir de múltiples capturas mediante aprendizaje automático, 
Trabajo Fin de Grado, Universidad Carlos III de Madrid, July 2020.

Example of how to use data_factory_from_reid_multi

This is an example of how to use data_factory_from_reid_multi with PRID2011 [2]:

string prid= "PRID_DATASET_DIRECTORY"; 
read_initial_parameters(argc, argv, &seed, &number_of_b_samples, &stride, &random_b_samples); 
get_multiple_samples(prid, 7,4, number_of_b_samples,stride, random_b_samples); 
for(int i=1; i<number_of_b_samples+1; i++);
	train_val_test_division_multiple(prid, 100, 100, 100, 10, 100, 649, 100, &tag, i);
create_pair_data_multiple(prid, 100000, 10000, 1, 1, 1);
for(int i=2; i<number_of_b_samples+1; i++)
	create_pair_data_multiple_remaining(prid, i);
tag=true;
for(int i=1; i<number_of_b_samples+1; i++)
	create_test_data_multiple(prid, i, &tag);

NOTE: be careful with PRID samples whose identification number is higher than 200, because different people in cam a and b are labbelled with the same number, from id 200. Alternative solution: remove samples with ID higher than 200 in cam_a set, they are not neccesarry in the training and test described in [3].


[1] José Héctor Penadés-Migallón, Re-identificación de personas a partir de múltiples capturas mediante aprendizaje automático, Trabajo Fin de Grado, Universidad Carlos III de Madrid, July 2020.

[2] M. Hirzer, C. Beleznai, P.M. Roth, and H. Bischof, “Person Re-ID (PRID) Dataset”. Institute of Computer Graphics and Vision, 2011. Avalaible at: https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/prid11/

[3] M. Hirzer, C. Beleznai, P.M. Roth, and H. Bischof (2011). Person re-identification by descriptive and discriminative classification. In Scandinavian conference on Image analysis, pages 91–102. Springer.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages