-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_base.py
308 lines (214 loc) · 8.45 KB
/
feature_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from operator import itemgetter, or_, and_
from functools import reduce
import copy
from pyspark.sql.types import StringType, ArrayType
import pyspark.sql.functions as F
class Lit(object):
def __init__(self, value):
self.value = value
class FeatureColumn(object):
"""
A FeaturesColumn object is a stateless transformation.
"""
def __init__(self,
default_value=None,
input_columns=None,
initial_values=None):
self.default_value = default_value
self.input_columns = input_columns
self.initial_values = initial_values
def __call__(self, **kwargs):
new_obj = copy.deepcopy(self)
new_obj.__dict__.update(kwargs)
return new_obj
@property
def default(self):
return self.default_value
@property
def inputs(self):
return self.input_columns
def process_df(self, df, output, env=None):
raise NotImplementedError
def get_input_column(self, output):
raise NotImplementedError
class Identity(FeatureColumn):
def get_input_column(self, output):
if self.inputs:
return self.inputs[0]
else:
return output
def process_df(self, df, output, env=None):
assert output == self.get_input_column(output)
return df
def _column_names_to_expression(names, df=None):
if df is None:
get_col = F.col
else:
names = filter(lambda r: r in df.columns, names)
get_col = df.__getitem__
col_expression = []
for name in names:
if isinstance(name, Lit):
col = F.lit(name.value)
elif isinstance(name, basestring):
if '.' in name:
col = None
for w in name.split('.'):
if col is None:
col = get_col(w)
else:
col = col[w]
else:
col = get_col(name)
else:
col = name
col_expression.append(col)
return col_expression
def _column_equal(df_one, df_two, keys_one, keys_two):
if not isinstance(keys_one, (list, tuple)):
keys_one = [keys_one]
if not isinstance(keys_two, (list, tuple)):
keys_two = [keys_two]
return reduce(and_, ((col_one == col_two)
for col_one, col_two in
zip(_column_names_to_expression(keys_one, df_one),
_column_names_to_expression(keys_two, df_two))))
class OneToOne(Identity):
def _process_df(self, col):
return col
def process_df(self, df, output, env=None):
col_name = self.get_input_column(output)
col = _column_names_to_expression([col_name])[0]
return df.withColumn(output, self._process_df(col))
class Concat(OneToOne):
def process_df(self, df, output, env=None):
col_exprs = _column_names_to_expression(self.input_columns)
return df.withColumn(output, F.concat(*col_exprs))
class IsIn(OneToOne):
def _process_df(self, col):
return col.isin(self.initial_values)
class Contains(OneToOne):
def _process_df(self, col):
not_in_condition = lambda _: (col.like('%' + _ + '%'))
return reduce(or_, map(not_in_condition, self.initial_values))
class NotContains(Contains):
def _process_df(self, col):
return ~super(NotContains, self)._process_df(col)
class IsNull(OneToOne):
def _process_df(self, col):
return col.isNull()
class IsNotNull(OneToOne):
def _process_df(self, col):
return col.isNotNull()
class Unicode_(OneToOne):
def _process_df(self, col):
return col.cast('string')
class MapUnicode(OneToOne):
def _process_df(self, col):
return col.cast(ArrayType(StringType()))
class Float_(OneToOne):
def _process_df(self, col):
return F.when(col.cast('float')).isNull(), F.lit(self.default_value)).otherwise(
col.cast('float'))
class Log1p(OneToOne):
def _process_df(self, col):
return F.when(col.isNull(), F.lit(self.default_value)).otherwise(
F.log1p(col.cast('float')))
class Combinator(object):
def __init__(self, feature_columns):
self.feature_columns = feature_columns
@property
def default(self):
return self.feature_columns[-1][1].default
def process_df(self, df, output, env=None):
for feature, feature_column in self.feature_columns:
df = feature_column.process_df(df, feature)
return df
class Joiner(object):
def __init__(self, key, with_key, feature_table=None, with_feature_table=None, default_value=None, how='left'):
self.key = key
self.with_key = with_key
self.with_feature_table = with_feature_table
self.default_value = default_value
self.feature_table = feature_table
self.how = how
assert how in ('left', 'inner'), 'only left and inner is supported'
def join_df(self, df, table, with_key):
left, right = df, table
if self.feature_table:
if self.how == 'left':
left, right = table, df
return (
left
.join(right, on=with_key, how=self.how)
)
def prepare_table(self, env, output):
if self.with_feature_table:
origin_key = self.with_key
join_key = self.key
processor = self.with_feature_table
else:
origin_key = self.key
join_key = self.with_key
processor = self.feature_table
table = processor.squash_df(env=env, origin_key=origin_key, output=output)
return table.withColumnRenamed(origin_key, join_key), join_key
def process_df(self, df, output, env=None):
table, join_key = self.prepare_table(env, output)
return self.join_df(df, table, join_key)
def get_input_column(self, output):
raise Exception('Too complicated to count inputs for a joiner')
class MapJoiner(Joiner):
def prepare_df(self, df, explode_key):
t = df.select(self.key).schema.fields[0].dataType.elementType
exploded_df = df.withColumn(explode_key,
F.explode(
F.when(F.col(self.key).isNotNull(),
F.col(self.key))
.otherwise(F.array(F.lit(None).cast(t)))))
return exploded_df
def process_df(self, df, output, env=None):
assert self.with_feature_table, 'only join against is supported for map join'
explode_key = 'explode:%s' % self.key
assert explode_key not in df.columns, 'duplication happened'
table, join_key = self.prepare_table(env, output)
table = table.withColumnRenamed(self.key, explode_key)
exploded_df = self.prepare_df(df, explode_key)
new_df = self.join_df(exploded_df, table, explode_key)
new_df = (
new_df
.withColumn(output, F.when(F.col(explode_key).isNotNull(), F.create_map(explode_key, output))
.otherwise(F.lit(None)))
.groupby(_column_names_to_expression(df.columns, exploded_df))
.agg(F.collect_list(F.col(output)).alias(output))
)
return new_df
class FeatureTable(object):
def __init__(self, feature_columns, name=None):
self.feature_columns = feature_columns
self.name = name
@property
def outputs(self):
return map(itemgetter(0), self.feature_columns)
def process_df(self, df=None, env=None):
if env:
df = env.get(self.name)
for feature, feature_column in self.feature_columns:
df = feature_column.process_df(df, feature, env)
return df
def squash_df(self, df=None, env=None, origin_key=None, output=None):
df = self.process_df(df, env)
df = df.withColumn(output, F.struct(*outputs))
return df.select(origin_key, output)
def transform_df(self, df, env=None):
return df.select(*self.outputs)
class Executor(object):
def __init__(self, feature_table):
if not isinstance(feature_table, FeatureTable):
self.feature_table = FeatureTable(feature_table)
else:
self.feature_table = feature_table
def process_df(self, df=None, env=None):
return self.feature_table.process_df(df, env)
def transform_df(self, df=None, env=None):
return self.feature_table.transform_df(df, env)