-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
48 lines (38 loc) · 1.29 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import scipy.io as sio
import h5py
class BITDataset(Dataset):
def __init__(self, f):
super(BITDataset, self).__init__()
self.data = None
self.label = None
self.path = f
with h5py.File(self.path, 'r') as file:
self.len = file.get('data').shape[0]
def __getitem__(self, idx):
if self.data == None:
self.data = h5py.File(self.path, 'r').get('data')
self.label = h5py.File(self.path, 'r').get('label')
patch = torch.from_numpy(np.transpose(self.data[idx], (2, 0, 1))).float()
label = self.label[idx]
return patch, label
def __len__(self):
return self.len
def __labels__(self):
return self.label
class Dataset(Dataset):
def __init__(self, dataset, transfor):
self.data = dataset[0].astype(np.float32)
self.transformer = transfor
self.labels = []
for n in dataset[1]: self.labels += [int(n)]
def __getitem__(self, index):
img = torch.from_numpy(np.asarray(self.data[index,:,:,:]))
label = self.labels[index]
return img, label
def __len__(self):
return len(self.labels)
def __labels__(self):
return self.labels