forked from DingLi23/s2search
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgetting_data.py
267 lines (230 loc) · 7.96 KB
/
getting_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import json
import os
import numpy as np
import yaml
import pandas as pd
from ranker_helper import get_scores
feature_key_list = ['title', 'abstract',
'venue', 'authors', 'year', 'n_citations']
categorical_feature_key_list = ['title', 'abstract', 'venue', 'authors']
masking_option_keys = [
"t",
"abs",
"v",
"au",
"y",
"c",
"tabs",
"tabsv",
"tabsvau",
"tabsvauy",
"tabsvauyc",
"tabsvauc",
"tabsvy",
"tabsvyc",
"tabsvc",
"tabsau",
"tabsauy",
"tabsauyc",
"tabsauc",
"tabsy",
"tabsyc",
"tabsc",
"tv",
"tvau",
"tvauy",
"tvauyc",
"tvauc",
"tvy",
"tvyc",
"tvc",
"tau",
"tauy",
"tauyc",
"tauc",
"ty",
"tyc",
"tc",
"absv",
"absvau",
"absvauy",
"absvauyc",
"absvauc",
"absvy",
"absvyc",
"absvc",
"absau",
"absauy",
"absauyc",
"absauc",
"absy",
"absyc",
"absc",
"vau",
"vauy",
"vauyc",
"vauc",
"vy",
"vyc",
"vc",
"auy",
"auyc",
"auc",
"yc",
]
def get(exp_name, sample_name):
work_dir = os.path.dirname(os.path.abspath(__file__))
exp_dir_path = os.path.join(work_dir, 'pipelining', exp_name)
conf_path = os.path.join(exp_dir_path, 'conf.yml')
with open(conf_path, 'r') as f:
conf = yaml.safe_load(f)
samples_config = conf.get('samples')
# sample_file_list = samples_config.keys()
print(f'Got sample data: {sample_name} {exp_dir_path}')
# preparing data
score_dir = os.path.join(exp_dir_path, 'scores')
sample_data_and_config = []
sample_task_list = samples_config[sample_name]
if (type(sample_task_list) == dict):
# new config
sample_task_list = sample_task_list['masking']
for t in sample_task_list:
t['masking_option_keys'] = masking_option_keys.copy()
t_count = 0
for task in sample_task_list:
t_count += 1
sample_query = task['query']
sample_masking_option_keys = task['masking_option_keys']
sample_origin_npy = np.load(os.path.join(
score_dir, f'{exp_name}_{sample_name}_t{t_count}_origin.npz'))['arr_0']
sample_feature_masking_npy = []
for key in sample_masking_option_keys:
sample_feature_masking_npy.append(np.load(os.path.join(
score_dir, f'{exp_name}_{sample_name}_t{t_count}_{key}.npz'))['arr_0'])
if len(sample_feature_masking_npy) > 0:
feature_stack = np.stack((sample_feature_masking_npy))
else:
feature_stack = np.stack(([sample_origin_npy]))
sample_masking_option_keys.append('_origin')
sample_data_and_config.append({
'sample_and_task_name': f'{sample_name}',
'task_number': t_count,
'query': sample_query,
'origin': sample_origin_npy,
'feature_stack': feature_stack,
'masking_option_keys': sample_masking_option_keys
})
return sample_data_and_config
def load_sample(exp_name, sample_name, sort=None, del_f=['id', 's2_id'],
rank_f=None, query=None, author_as_str=False, task_name=None, not_df=False):
data = []
pipelining_dir = os.path.join(os.path.dirname(
os.path.abspath(__file__)), 'pipelining')
with open(os.path.join(pipelining_dir, exp_name, f'{sample_name}.data')) as f:
lines = f.readlines()
for line in lines:
jso = json.loads(line.strip())
if del_f != None:
for k in del_f:
if jso.get(k) != None:
del jso[k]
if author_as_str:
jso['authors'] = json.dumps(jso['authors'])
data.append(jso)
if not_df:
return data
if sort != None:
if sort == 'year' or sort == 'n_citations':
data.sort(key=lambda x: x[sort])
else:
# masking
df = pd.read_json(
f"[{','.join(list(map(lambda x: json.dumps(x), data)))}]")
dfd = df.drop([x for x in feature_key_list if x != sort], axis=1)
masked_paper = json.loads(dfd.to_json(orient='records'))
# ranking
masked_scores = rank_f(query, masked_paper, task_name=task_name)
scores_df = pd.DataFrame(data={'score': masked_scores})
return pd.concat([df, scores_df], axis=1).sort_values(by=['score']).astype({
'title': 'category',
'abstract': 'category',
'venue': 'category',
'authors': 'category' if author_as_str else 'object',
})
return pd.read_json(f"[{','.join(list(map(lambda x: json.dumps(x), data)))}]").astype({
'title': 'category',
'abstract': 'category',
'venue': 'category',
'authors': 'category' if author_as_str else 'object',
})
def read_conf(exp_dir_path):
conf_path = os.path.join(exp_dir_path, 'conf.yml')
with open(str(conf_path), 'r') as f:
conf = yaml.safe_load(f)
return conf.get('description'), conf.get('samples'), conf.get('sample_from_other_exp'),
def remove_duplicate(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def get_categorical_encoded_data(data_exp_name, data_sample_name, query, paper_data=None):
if paper_data == None:
paper_data = load_sample(data_exp_name, data_sample_name, not_df=True)
categorical_name = {}
for i in range(len(feature_key_list)):
feature_name = feature_key_list[i]
if feature_name in categorical_feature_key_list:
df = load_sample(data_exp_name, data_sample_name,
query=query, sort=feature_name, rank_f=get_scores)
if feature_name == 'authors':
l = [json.dumps(x) for x in df[feature_name]]
else:
l = list(df[feature_name])
categorical_name[i] = remove_duplicate(l)
categorical_name_map = {}
for i in range(len(feature_key_list)):
feature_name = feature_key_list[i]
if feature_name in categorical_feature_key_list:
categorical_name_map[i] = {}
values = categorical_name[i]
for j in range(len(values)):
value = values[j]
categorical_name_map[i][value] = j
# encoding data
for i in range(len(paper_data)):
paper_data[i] = [
categorical_name_map[0][paper_data[i]['title']
], categorical_name_map[1][paper_data[i]['abstract']],
categorical_name_map[2][paper_data[i]['venue']], categorical_name_map[3][json.dumps(
paper_data[i]['authors'])],
paper_data[i]['year'],
paper_data[i]['n_citations']
]
paper_data = np.array(paper_data)
return (categorical_name, paper_data)
def decode_paper(categorical_name, encoded_p):
# return dict(
# title=categorical_name[0][int(
# encoded_p[0])] if encoded_p[0] != -1 else ' ',
# abstract=categorical_name[1][int(
# encoded_p[1])] if encoded_p[1] != -1 else ' ',
# venue=categorical_name[2][int(
# encoded_p[2])] if encoded_p[2] != -1 else ' ',
# authors=json.loads(categorical_name[3][int(
# encoded_p[3])]) if encoded_p[3] != -1 else [],
# year=encoded_p[4] if encoded_p[4] != -1 else ' ',
# n_citations=encoded_p[5] if encoded_p[5] != -1 else 0,
# )
rs = {}
if encoded_p[0] != -1:
rs['title'] = categorical_name[0][int(encoded_p[0])]
if encoded_p[1] != -1:
rs['abstract'] = categorical_name[1][int(encoded_p[1])]
if encoded_p[2] != -1:
rs['venue'] = categorical_name[2][int(encoded_p[2])]
if encoded_p[3] != -1:
rs['authors'] = json.loads(categorical_name[3][int(encoded_p[3])])
if encoded_p[4] != -1:
rs['year'] = encoded_p[4]
if encoded_p[5] != -1:
rs['n_citations'] = encoded_p[5]
return rs