This repository has been archived by the owner on Jun 2, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
98 lines (70 loc) · 2.74 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import tensorflow as tf
def _weight_var(shape, wd=0):
"""Wrap the variable definition process to include weight decay (l2
penalty).
"""
initial = tf.truncated_normal(shape, stddev=0.1)
var = tf.Variable(initial)
# optional weigth decay (l2)
if wd:
weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def _bias_var(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def inference(x, keep_prob):
"""Build the convnet model for inference
Args:
x_image: image placeholder
keep_prob: dropout probability placeholder
Returns:
y_conv: probability output
"""
# 1st convolutional layer
W_conv1 = _weight_var([5, 5, 1, 32])
b_conv1 = _bias_var([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# 2nd convolutional layer
W_conv2 = _weight_var([5, 5, 32, 64])
b_conv2 = _bias_var([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# fully connected layer
W_fc1 = _weight_var([7*7*64, 512])
b_fc1 = _bias_var([512])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# add dropout
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# fully connected + softmax layer
W_fc2 = _weight_var([512, 10])
b_fc2 = _bias_var([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
return y_conv
def loss(y_conv, y):
"""Calculates the cross entropy loss"""
cross_entropy = - tf.reduce_mean(y * tf.log(y_conv), name='xentropy')
tf.add_to_collection('losses', cross_entropy)
# total loss including weight decay
loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
return cross_entropy, loss
def training(loss, lr):
"""Define the training operation using basic SGD"""
tf.scalar_summary(loss.op.name, loss)
optimizer = tf.train.GradientDescentOptimizer(lr)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(y_conv, y):
"""Evaluation operation to calculate accuracy"""
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return accuracy