forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlovasz_softmax_deeplabv3p_mobilenet_pascal.yaml
executable file
·49 lines (47 loc) · 2.31 KB
/
lovasz_softmax_deeplabv3p_mobilenet_pascal.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
TRAIN_CROP_SIZE: (500, 500) # (width, height), for unpadding rangescaling and stepscaling #训练时图像裁剪尺寸(宽,高)
EVAL_CROP_SIZE: (500, 500) # (width, height), for unpadding rangescaling and stepscaling #验证时图像裁剪尺寸(宽,高)
AUG:
AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE: (500, 500) # (width, height), for unpadding
INF_RESIZE_VALUE: 500 # for rangescaling
MAX_RESIZE_VALUE: 600 # for rangescaling
MIN_RESIZE_VALUE: 400 # for rangescaling
MAX_SCALE_FACTOR: 1.25 # for stepscaling
MIN_SCALE_FACTOR: 0.75 # for stepscaling
SCALE_STEP_SIZE: 0.05 # for stepscaling
MIRROR: True
FLIP: True
BATCH_SIZE: 16 #批处理大小
DATASET:
DATA_DIR: "./dataset/VOCtrainval_11-May-2012/VOC2012/" #图片路径
IMAGE_TYPE: "rgb" # choice rgb or rgba #图片类别“RGB”
NUM_CLASSES: 21 #类别数(包括背景类别)
TEST_FILE_LIST: "dataset/VOCtrainval_11-May-2012/VOC2012/ImageSets/Segmentation/val.list"
TRAIN_FILE_LIST: "dataset/VOCtrainval_11-May-2012/VOC2012/ImageSets/Segmentation/train.list"
VAL_FILE_LIST: "dataset/VOCtrainval_11-May-2012/VOC2012/ImageSets/Segmentation/val.list"
VIS_FILE_LIST: "dataset/VOCtrainval_11-May-2012/VOC2012/ImageSets/Segmentation/val.list"
IGNORE_INDEX: 255
SEPARATOR: " "
MODEL:
MODEL_NAME: "deeplabv3p"
DEFAULT_NORM_TYPE: "bn" #指定norm的类型,此处提供bn和gn(默认)两种选择,分别指batch norm和group norm。
DEEPLAB:
BACKBONE: "mobilenetv2"
DEPTH_MULTIPLIER: 1.0
ENCODER_WITH_ASPP: False
ENABLE_DECODER: False
TRAIN:
PRETRAINED_MODEL_DIR: "./pretrained_model/deeplabv3p_mobilenetv2-1-0_bn_coco/"
MODEL_SAVE_DIR: "./saved_model/lovasz-softmax-voc" #模型保存路径
SNAPSHOT_EPOCH: 10
TEST:
TEST_MODEL: "./saved_model/lovasz-softmax-voc/final" #为测试模型路径
SOLVER:
NUM_EPOCHS: 100 #训练epoch数,正整数
LR: 0.0001 #初始学习率
LR_POLICY: "poly" #学习率下降方法, 选项为poly、piecewise和cosine
OPTIMIZER: "sgd" #优化算法, 选项为sgd和adam
LOSS: ["lovasz_softmax_loss","softmax_loss"]
LOSS_WEIGHT:
LOVASZ_SOFTMAX_LOSS: 0.2
SOFTMAX_LOSS: 0.8