-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathmetrics.py
118 lines (106 loc) · 3.88 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
__author__ = "Bill MacCartney"
__copyright__ = "Copyright 2015, Bill MacCartney"
__credits__ = []
__license__ = "GNU General Public License, version 2.0"
__version__ = "0.9"
__maintainer__ = "Bill MacCartney"
__email__ = "See the author's website"
# An evaluation metric is a function that takes a list of parses and an example,
# and returns a number.
class Metric:
def name(self):
return ''
def evaluate(self, example, parses):
return 0.0
class SemanticsAccuracyMetric(Metric):
def name(self):
return 'semantics accuracy'
def evaluate(self, example, parses):
return 1.0 if parses and parses[0].semantics == example.semantics else 0.0
class DenotationAccuracyMetric(Metric):
def name(self):
return 'denotation accuracy'
def evaluate(self, example, parses):
return 1.0 if parses and parses[0].denotation == example.denotation else 0.0
class SemanticsOracleAccuracyMetric(Metric):
def name(self):
return 'semantics oracle accuracy'
def evaluate(self, example, parses):
for parse in parses:
if parse.semantics == example.semantics:
return 1.0
return 0.0
class DenotationOracleAccuracyMetric(Metric):
def name(self):
return 'denotation oracle accuracy'
def evaluate(self, example, parses):
for parse in parses:
if parse.denotation == example.denotation:
return 1.0
return 0.0
class NumParsesMetric(Metric):
def name(self):
return 'number of parses'
def evaluate(self, example, parses):
return len(parses)
# TODO: Consider adding a constructor parameter which is a predicate saying
# whether the parse should be counted. Would be useful in the TravelDomain,
# where we don't really want to count parses like {'type': 'other'}.
class HasParseMetric(Metric):
def __init__(self, name='has parse', parse_filter_fn=(lambda parse: True)):
self.my_name = name
self.parse_filter_fn = parse_filter_fn
def name(self):
return self.my_name
def evaluate(self, example, parses):
for parse in parses:
if self.parse_filter_fn(parse):
return 1.0
return 0.0
class HasDenotationMetric(Metric):
def name(self):
return 'has parse with denotation'
def evaluate(self, example, parses):
return 1.0 if any([parse.denotation for parse in parses]) else 0.0
class SpuriousAmbiguityMetric(Metric):
"""
Returns a value on [0, 1] which reflects the degree of spurious ambiguity.
Returns 0.0 if each parse has unique semantics.
Returns 1.0 if there are multiple parses, all sharing the same semantics.
In general, returns a value which can be interpreted as the fraction of
parses whose semantics were already produced by another parse.
"""
def name(self):
return 'spurious ambiguity'
def evaluate(self, example, parses):
if len(parses) == 1:
return 0.0
sems = set([str(parse.semantics) for parse in parses])
# This conditional should be redundant with the final line.
# But without it, we can return -0.0, which looks weird.
if len(sems) == len(parses):
return 0.0
return 1.0 * (len(parses) - len(sems)) / (len(parses) - 1)
def standard_metrics():
return [
SemanticsAccuracyMetric(),
SemanticsOracleAccuracyMetric(),
DenotationAccuracyMetric(),
DenotationOracleAccuracyMetric(),
NumParsesMetric(),
SpuriousAmbiguityMetric(),
]
def semantics_match_metrics():
return [
SemanticsAccuracyMetric(),
SemanticsOracleAccuracyMetric(),
NumParsesMetric(),
SpuriousAmbiguityMetric(),
]
def denotation_match_metrics():
return [
DenotationAccuracyMetric(),
DenotationOracleAccuracyMetric(),
NumParsesMetric(),
SpuriousAmbiguityMetric(),
]