-
Notifications
You must be signed in to change notification settings - Fork 0
/
Oldroyd-B2-full-R.py
executable file
·415 lines (358 loc) · 12.1 KB
/
Oldroyd-B2-full-R.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#----------------------------------------------------------------------------#
# Fully Spectral Linear stability analysis Oldroyd B Model
# Last modified: Fri 05 Apr 2013 15:44:35 BST
#----------------------------------------------------------------------------#
""" Perform Linear stability analysis to find eigenvalues for the stability
of the streaky flow"""
# MODULES
import sys
import time
from scipy import *
from scipy import linalg
from scipy.sparse import linalg as sparselinalg
import cPickle as pickle
import ConfigParser
#FUNCTIONS
def mk_single_diffy():
"""Makes a matrix to differentiate a single vector of Chebyshev's,
for use in constructing large differentiation matrix for whole system"""
# make matrix:
mat = zeros((M, M), dtype='d')
for m in range(M):
for p in range(m+1, M, 2):
mat[m,p] = 2*p*oneOverC[m]
return mat
def mk_diff_y():
"""Make the matrix to differentiate a velocity vector wrt y."""
D = mk_single_diffy()
MDY = zeros( (vecLen, vecLen) )
for cheb in range(0,vecLen,M):
MDY[cheb:cheb+M, cheb:cheb+M] = D
del cheb
return MDY
def mk_diff_z():
"""Make matrix to do fourier differentiation wrt z."""
MDZ = zeros( (vecLen, vecLen), dtype='complex')
n = -N
for i in range(0, vecLen, M):
MDZ[i:i+M, i:i+M] = eye(M, M, dtype='complex')*n*gamma*1.j
n += 1
del n, i
return MDZ
def cheb_prod_mat(velA):
"""Function to return a matrix for left-multiplying two matrices
of velocities."""
D = zeros((M, M), dtype='complex')
#failcount = 0
for n in range(M):
for m in range(-M+1,M): # Bottom of range is inclusive
itr = abs(n-m)
if (itr < M):
D[n, abs(m)] += 0.5*oneOverC[n]*CFunc[itr]*CFunc[abs(m)]*velA[itr]
del m, n, itr
return D
def prod_mat(velA):
"""Function to return a matrix ready for the left dot product with another
velocity vector"""
MM = zeros((vecLen, vecLen), dtype='complex')
#First make the middle row
midMat = zeros((M, vecLen), dtype='complex')
for n in range(2*N+1): # Fourier Matrix is 2*N+1 cheb matricies
yprodmat = cheb_prod_mat(velA[n*M:(n+1)*M])
endind = 2*N+1-n
midMat[:, (endind-1)*M:endind*M] = yprodmat
del n
#copy matrix into MM, according to the matrix for spectral space
# top part first
for i in range(0, N):
MM[i*M:(i+1)*M, :] = column_stack((midMat[:, (N-i)*M:], zeros((M, (N-i)*M))) )
del i
# middle
MM[N*M:(N+1)*M, :] = midMat
# bottom
for i in range(0, N):
MM[(i+N+1)*M:(i+2+N)*M, :] = column_stack((zeros((M, (i+1)*M)), midMat[:, :(2*N-i)*M] ))
del i
return MM
def mk_bigM():
""" makes the matrix to appear on the left hand side of the generalised
eigenvalue problem"""
bigM = zeros((10*vLen, 10*vLen), dtype=complex)
################Navier Stokes x direction:###############
#*u
bigM[0:vLen, 0:vLen] = - Re*GRAD + beta*LAPLACIAN
#*v
bigM[0:vLen, vLen:2*vLen] = - Re*MMDYU
#*w
bigM[0:vLen, 2*vLen:3*vLen] = - Re*MMDZU
#*p
bigM[0:vLen, 3*vLen:4*vLen] = - 1.j*k*eye(vLen,vLen)
#cxx
bigM[0:vLen, 4*vLen:5*vLen] = (1-beta)*oneOverWeiss*1.j*k*eye(vLen,vLen)
#cyy
#czz
#cxy
bigM[0:vLen, 7*vLen:8*vLen] = (1-beta)*oneOverWeiss*MDY
#cxz
bigM[0:vLen, 8*vLen:9*vLen] = (1-beta)*oneOverWeiss*MDZ
#cyz
################Navier Stokes y direction:###############
#*u
#*v
bigM[vLen:2*vLen, vLen:2*vLen] = - Re*GRAD - Re*MMDYV \
+ beta*LAPLACIAN
#*w
bigM[vLen:2*vLen, 2*vLen:3*vLen] = - Re*MMDZV
#*p
bigM[vLen:2*vLen, 3*vLen:4*vLen] = - MDY
#cxx
#cyy
bigM[vLen:2*vLen, 5*vLen:6*vLen] = (1-beta)*oneOverWeiss*MDY
#czz
#cxy
bigM[vLen:2*vLen, 7*vLen:8*vLen] = (1-beta)*oneOverWeiss*1.j*k*eye(vLen,vLen)
#cxz
#cyz
bigM[vLen:2*vLen, 9*vLen:10*vLen] = (1-beta)*oneOverWeiss*MDZ
################Navier Stokes z direction:###############
#*u
#*v
bigM[2*vLen:3*vLen, vLen:2*vLen] = -Re*MMDYW
#*w
bigM[2*vLen:3*vLen, 2*vLen:3*vLen] = - Re*GRAD - Re*MMDZW \
+ beta*LAPLACIAN
#*p
bigM[2*vLen:3*vLen, 3*vLen:4*vLen] = - MDZ
#cxx
#cyy
#czz
bigM[2*vLen:3*vLen, 6*vLen:7*vLen] = (1-beta)*oneOverWeiss*MDZ
#cxy
#cxz
bigM[2*vLen:3*vLen, 8*vLen:9*vLen] = (1-beta)*oneOverWeiss*1.j*k*eye(vLen,vLen)
#cyz
bigM[2*vLen:3*vLen, 9*vLen:10*vLen] = (1-beta)*oneOverWeiss*MDY
################Incompressability equation:###############
#*u
bigM[3*vLen:4*vLen, 0:vLen] = 1.j*k*eye(vLen,vLen)
#*v
bigM[3*vLen:4*vLen, vLen:2*vLen] = MDY
#*w
bigM[3*vLen:4*vLen, 2*vLen:3*vLen] = MDZ
#*p
#cxx
#cyy
#czz
#cxy
#cxz
#cyz
################cxx equation:####################
#*u
bigM[4*vLen:5*vLen, 0:vLen] = 2.j*k*MMCXX + 2*dot(MMCXY,MDY) \
+ 2*dot(MMCXZ,MDZ)
#*v
bigM[4*vLen:5*vLen, vLen:2*vLen] = -prod_mat(dot(MDY,conxx))
#*w
bigM[4*vLen:5*vLen, 2*vLen:3*vLen] = -prod_mat(dot(MDZ,conxx))
#*p
#cxx
bigM[4*vLen:5*vLen, 4*vLen:5*vLen] = -oneOverWeiss*eye(vLen,vLen) - GRAD
#cyy
#czz
#cxy
bigM[4*vLen:5*vLen, 7*vLen:8*vLen] = 2*MMDYU
#cxz
bigM[4*vLen:5*vLen, 8*vLen:9*vLen] = 2*MMDZU
#cyz
################cyy equation:####################
#*u
#*v
bigM[5*vLen:6*vLen, vLen:2*vLen] = +2j*k*MMCXY +2*dot(MMCYY,MDY) \
+ 2*dot(MMCYZ,MDZ) \
- prod_mat(dot(MDY,conyy))
#*w
bigM[5*vLen:6*vLen, 2*vLen:3*vLen] = -prod_mat(dot(MDZ,conyy))
#*p
#cxx
#cyy
bigM[5*vLen:6*vLen, 5*vLen:6*vLen] = -oneOverWeiss*eye(vLen,vLen) - GRAD \
+ 2*MMDYV
#czz
#cxy
#cxz
#cyz
bigM[5*vLen:6*vLen, 9*vLen:10*vLen] = 2*MMDZV
################czz equation:####################
#*u
#*v
bigM[6*vLen:7*vLen, vLen:2*vLen] = -prod_mat(dot(MDY,conzz))
#*w
bigM[6*vLen:7*vLen, 2*vLen:3*vLen] = -prod_mat(dot(MDZ,conzz)) + 2.j*k*MMCXZ \
+ 2*dot(MMCYZ,MDY) + 2*dot(MMCZZ,MDZ)
#*p
#cxx
#cyy
#czz
bigM[6*vLen:7*vLen, 6*vLen:7*vLen] = - oneOverWeiss*eye(vLen,vLen) - GRAD \
+ 2*MMDZW
#cxy
#cxz
#cyz
bigM[6*vLen:7*vLen, 9*vLen:10*vLen] = 2*MMDYW
################cxy equation:####################
#*u
bigM[7*vLen:8*vLen, 0:vLen] = + dot(MMCYY,MDY) + dot(MMCYZ,MDZ)
#*v
bigM[7*vLen:8*vLen, vLen:2*vLen] = -prod_mat(dot(MDY,conxy)) + 1.j*k*MMCXX \
+ dot(MMCXZ,MDZ)
#*w
bigM[7*vLen:8*vLen, 2*vLen:3*vLen] = - prod_mat(dot(MDZ,conxy)) \
- dot(MMCXY,MDZ)
#*p
#cxx
#cyy
bigM[7*vLen:8*vLen, 5*vLen:6*vLen] = MMDYU
#czz
#cxy
bigM[7*vLen:8*vLen, 7*vLen:8*vLen] = -oneOverWeiss*eye(vLen,vLen) - GRAD\
+ MMDYV
#cxz
bigM[7*vLen:8*vLen, 8*vLen:9*vLen] = MMDZV
#cyz
bigM[7*vLen:8*vLen, 9*vLen:10*vLen] = MMDZU
################cxz equation:####################
#*u
bigM[8*vLen:9*vLen, 0:vLen] = + dot(MMCYZ,MDY) + dot(MMCZZ,MDZ)
#*v
bigM[8*vLen:9*vLen, vLen:2*vLen] = - prod_mat(dot(MDY,conxz)) \
- dot(MMCXZ,MDY)
#*w
bigM[8*vLen:9*vLen, 2*vLen:3*vLen] = - prod_mat(dot(MDZ,conxz)) + 1.j*k*MMCXX\
+ dot(MMCXY,MDY)
#*p
#cxx
#cyy
#czz
bigM[8*vLen:9*vLen, 6*vLen:7*vLen] = MMDZU
#cxy
bigM[8*vLen:9*vLen, 7*vLen:8*vLen] = MMDYW
#cxz
bigM[8*vLen:9*vLen, 8*vLen:9*vLen] = -oneOverWeiss*eye(vLen,vLen) - GRAD\
+ MMDZW
#cyz
bigM[8*vLen:9*vLen, 9*vLen:10*vLen] = MMDYU
###############cyz equation:####################
#*u
bigM[9*vLen:10*vLen, 0:vLen] = -1.j*k*MMCYZ
#*v
bigM[9*vLen:10*vLen, vLen:2*vLen] = - prod_mat(dot(MDY,conyz)) + 1.j*k*MMCXZ \
+ dot(MMCZZ,MDZ)
#*w
bigM[9*vLen:10*vLen, 2*vLen:3*vLen] = - prod_mat(dot(MDZ,conyz)) + 1.j*k*MMCXY \
+ dot(MMCYY,MDY)
#*p
#cxx
#cyy
bigM[9*vLen:10*vLen, 5*vLen:6*vLen] = MMDYW
#czz
bigM[9*vLen:10*vLen, 6*vLen:7*vLen] = MMDZV
#cxy
#cxz
#cyz
bigM[9*vLen:10*vLen, 9*vLen:10*vLen] = - oneOverWeiss*eye(vLen,vLen) - GRAD
#Apply Boundary Conditions for u, v, w:
for i in range(3*(2*N+1)):
bigM[M*(i+1)-2,:] = hstack((zeros(M*i), BTOP, zeros(10*vLen-M*(i+1))))
bigM[M*(i+1)-1,:] = hstack((zeros(M*i), BBOT, zeros(10*vLen-M*(i+1))))
del i
return bigM
#
# MAIN
#
#Start the clock:
startTime = time.time()
config = ConfigParser.RawConfigParser()
fp = open('OB-settings.cfg')
config.readfp(fp)
N = config.getint('settings', 'N')
M = config.getint('settings', 'M')
Re = config.getfloat('settings', 'Re')
beta = config.getfloat('settings','beta')
Weiss = config.getfloat('settings','Weiss')
Amp = config.getfloat('settings', 'Amp')
k = config.getfloat('settings', 'k')
fp.close()
ksettings = [0.3,0.5,0.7,0.9,1.1]
for k in ksettings:
print 'settings are N = {N}, M = {M} k = {k}'.format(N=N,M=M,k=k)
filename = '-N{N}-M{M}-Re{Re}-b{beta}-Wi{Weiss}-amp{Amp}.pickle'.format(\
N=N,M=M,Re=Re,beta=beta,Weiss=Weiss,Amp=Amp)
# Unpickle the answer from part1 and the V and W vectors
fpickle = open('pf'+filename, 'r')
(U,V,W,conxx,conyy,conzz,conxy,conxz,conyz) = pickle.load(fpickle)
fpickle.close()
# Setup variables:
gamma = pi / 2.
zLength = 2.*pi/gamma
vecLen = M*(2*N+1)
vLen = vecLen
print vLen, type(vLen)
oneOverWeiss = 1./Weiss
# Set the oneOverC function: 1/2 for m=0, 1 elsewhere:
oneOverC = ones(M)
oneOverC[0] = 1. / 2.
#set up the CFunc function: 2 for m=0, 1 elsewhere:
CFunc = ones(M)
CFunc[0] = 2.
#Boundary arrays:
BTOP = ones(M)
BBOT = ones(M)
BBOT[1:M:2] = -1
# make some useful matrices
MDY = mk_diff_y()
MDZ = mk_diff_z()
MMU = prod_mat(U)
MMV = prod_mat(V)
MMW = prod_mat(W)
MMCXX = prod_mat(conxx)
MMCYY = prod_mat(conyy)
MMCZZ = prod_mat(conzz)
MMCXY = prod_mat(conxy)
MMCXZ = prod_mat(conxz)
MMCYZ = prod_mat(conyz)
MMDYU = prod_mat(dot(MDY, U))
MMDZU = prod_mat(dot(MDZ, U))
MMDYV = prod_mat(dot(MDY, V))
MMDZV = prod_mat(dot(MDZ, V))
MMDYW = prod_mat(dot(MDY, W))
MMDZW = prod_mat(dot(MDZ, W))
LAPLACIAN = -(k**2)*eye(vLen,vLen) + dot(MDY,MDY) + dot(MDZ,MDZ)
GRAD = 1.j*k*MMU + dot(MMV,MDY) + dot(MMW,MDZ)
# Make the matrix for the generalised eigenvalue problem
equations_matrix= mk_bigM()
#delete extra arrays for neatness
del MMU,MMV,MMW,MMCXX,MMCYY,MMCZZ,MMCXY,MMCXZ,MMCYZ,MMDYU,\
MMDZU,MMDYV,MMDZV,MMDYW,MMDZW
# Make the scaling matrix for RHS of equation
RHS = eye(10*vLen,10*vLen)
RHS[:3*vLen, :3*vLen] = Re*eye(3*vLen,3*vLen)
# Zero all elements corresponding to p equation
RHS[3*vLen:4*vLen, :] = zeros((vLen,10*vLen))
# Apply boundary conditions to RHS
for i in range(3*(2*N+1)):
RHS[M*(i+1)-1, M*(i+1)-1] = 0
RHS[M*(i+1)-2, M*(i+1)-2] = 0
del i
#Use library function to solve for eigenvalues/vectors
print 'in linalg.eig time=', (time.time() - startTime)
eigenvals = linalg.eigvals(equations_matrix, RHS, overwrite_a=True)
# Save output
eigarray = vstack((real(eigenvals), imag(eigenvals))).T
#remove nans and infs from eigenvalues
eigarray = eigarray[~isnan(eigarray).any(1), :]
eigarray = eigarray[~isinf(eigarray).any(1), :]
savetxt('ev-k'+str(k)+filename[:-7]+'.dat', eigarray)
#stop the clock
print 'done in', (time.time()-startTime)
######################TESTS####################################################
###############################################################################