-
Notifications
You must be signed in to change notification settings - Fork 0
/
Oldroyd-B1-free-slip.py
executable file
·531 lines (427 loc) · 15.2 KB
/
Oldroyd-B1-free-slip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#----------------------------------------------------------------------------#
# Fully Spectral Newton Raphson Solver
# Oldroyd B Model
# Last modified: Fri 21 Mar 2014 15:29:22 GMT
#----------------------------------------------------------------------------#
"""Solves system of equations using a fully spectral method. Equations given
by: V.dU(y,z)/dy + W.dU/dz = 1/Re .del^2."""
# MODULES
import sys
from scipy import *
from scipy import linalg
from scipy import optimize
from scipy import special
import cPickle as pickle
import ConfigParser
import argparse
# SETTINGS -------------------------------------------------------------------
config = ConfigParser.RawConfigParser()
fp = open('OB-settings.cfg')
config.readfp(fp)
cfgN = config.getint('settings', 'N')
cfgM = config.getint('settings', 'M')
cfgRe = config.getfloat('settings', 'Re')
cfgbeta = config.getfloat('settings','beta')
cfgWeiss = config.getfloat('settings','Weiss')
cfgAmp = config.getfloat('settings', 'Amp')
cfgPiDivide = config.getfloat('settings', 'pi divide')
fp.close()
argparser = argparse.ArgumentParser()
argparser.add_argument("-N", type=int, default=cfgN,
help='Override Number of Fourier modes given in the config file')
argparser.add_argument("-M", type=int, default=cfgM,
help='Override Number of Chebyshev modes in the config file')
argparser.add_argument("-Re", type=float, default=cfgRe,
help="Override Reynold's number in the config file")
argparser.add_argument("-b", type=float, default=cfgbeta,
help='Override beta of the config file')
argparser.add_argument("-Wi", type=float, default=cfgWeiss,
help='Override Weissenberg number of the config file')
argparser.add_argument("-amp", type=float, default=cfgAmp,
help='Override amplitude of the streamwise vortices from the config file')
argparser.add_argument("-piDivide", type=float, default=cfgPiDivide,
help='Override piDivide from the config file')
args = argparser.parse_args()
N = args.N
M = args.M
Re = args.Re
beta = args.b
Weiss = args.Wi
Amp = args.amp
piDivide = args.piDivide
filename = 'pf-N{N}-M{M}-Re{Re}-b{beta}-Wi{Wi}-amp{Amp}-gdiv{gdiv}.pickle'.format(\
N=N,M=M,Re=Re,beta=beta,Wi=Weiss,Amp=Amp, gdiv=piDivide)
# -----------------------------------------------------------------------------
# FUNCTIONS
def mk_single_diffy():
"""Makes a matrix to differentiate a single vector of Chebyshev's,
for use in constructing large differentiation matrix for whole system"""
# make matrix:
mat = zeros((M, M), dtype='d')
for m in range(M):
for p in range(m+1, M, 2):
mat[m,p] = 2*p*oneOverC[m]
return mat
def mk_diff_y():
"""Make the matrix to differentiate a velocity vector wrt y."""
D = mk_single_diffy()
MDY = zeros( (vecLen, vecLen) )
for cheb in range(0,vecLen,M):
MDY[cheb:cheb+M, cheb:cheb+M] = D
del cheb
return MDY
def mk_diff_z():
"""Make matrix to do fourier differentiation wrt z."""
MDZ = zeros( (vecLen, vecLen), dtype='complex')
n = -N
for i in range(0, vecLen, M):
MDZ[i:i+M, i:i+M] = eye(M, M, dtype='complex')*n*gamma*1.j
n += 1
del n, i
return MDZ
def cheb_prod_mat(velA):
"""Function to return a matrix for left-multiplying two matrices
of velocities."""
D = zeros((M, M), dtype='complex')
#failcount = 0
for n in range(M):
for m in range(-M+1,M): # Bottom of range is inclusive
itr = abs(n-m)
if (itr < M):
D[n, abs(m)] += 0.5*oneOverC[n]*CFunc[itr]*CFunc[abs(m)]*velA[itr]
del m, n, itr
return D
def prod_mat(velA):
"""Function to return a matrix ready for the left dot product with another
velocity vector"""
MM = zeros((vecLen, vecLen), dtype='complex')
#First make the middle row
midMat = zeros((M, vecLen), dtype='complex')
for n in range(2*N+1): # Fourier Matrix is 2*N+1 cheb matricies
yprodmat = cheb_prod_mat(velA[n*M:(n+1)*M])
endind = 2*N+1-n
midMat[:, (endind-1)*M:endind*M] = yprodmat
del n
#copy matrix into MM, according to the matrix for spectral space
# top part first
for i in range(0, N):
MM[i*M:(i+1)*M, :] = column_stack((midMat[:, (N-i)*M:], zeros((M, (N-i)*M))) )
del i
# middle
MM[N*M:(N+1)*M, :] = midMat
# bottom
for i in range(0, N):
MM[(i+N+1)*M:(i+2+N)*M, :] = column_stack((zeros((M, (i+1)*M)), midMat[:, :(2*N-i)*M] ))
del i
return MM
def mk_no_slip_V():
V = zeros((M, 2*N+1), dtype = 'complex')
for m in range(0,M,2):
V[m,N-1] = 2*oneOverC[m]*( ((-1)**(m/2))*(special.jv(m,p)/cos(p)) -
special.iv(m,gamma)/cosh(gamma) )
V[m,N+1] = 2*oneOverC[m]*( ((-1)**(m/2))*(special.jv(m,p)/cos(p)) -
special.iv(m,gamma)/cosh(gamma) )
del m
V = 0.5*V #For the cosine amplitude.
Normal = ( cos(p)*cosh(gamma) ) / ( cosh(gamma) - cos(p) )
V = Amp * Normal * V
return V.T.flatten() #return 1D array
def mk_no_slip_W():
W = zeros((M, 2*N+1), dtype = 'complex')
for m in range(0,M,2):
W[m,N-1] = 2*oneOverC[m]*( ((-1)**(m/2))*(special.jv(m,p)/cos(p)) -
special.iv(m,gamma)/cosh(gamma) )
W[m,N+1] = 2*oneOverC[m]*( ((-1)**(m/2))*(special.jv(m,p)/cos(p)) -
special.iv(m,gamma)/cosh(gamma) )
del m
chebdY = mk_single_diffy()
W[:,N-1] = -dot(chebdY, W[:,N-1])
W[:,N+1] = -dot(chebdY, W[:,N+1])
W[:,N-1] = W[:,N-1]*0.5j
W[:,N+1] = W[:,N+1]*-0.5j
Normal = ( cos(p)*cosh(gamma) ) / ( cosh(gamma) - cos(p) )
W = Amp * Normal * W / gamma
return W.T.flatten() #return 1D array
def mk_free_slip_U():
"""
Create guess of the free slip version of the streamwise base velocity.
U(y) = sin bb*y
"""
U = zeros((M*(2*N+1)), dtype='D')
# Regardless of gamma. cf Waleffe
bb = pi/2.
U = zeros(M*(2*N+1) ,dtype='D')
for m in range(1,M,2):
U[M*N+m] = 2*oneOverC[m]*((-1)**((m-1)/2))* special.jv(m,pi/2.)
del m
return U
def mk_free_slip_V():
"""
Create the free slip version of the wall-normal base velocity.
V(y) = cos bb*y * cos gamma z
"""
V = zeros((M*(2*N+1)), dtype='D')
# Regardless of gamma. cf Waleffe
bb = pi/2.
# Set the y dependence
for m in range(0,M,2):
# Only non-zero for even m since it is an even function
V[M*(N-1)+m] = 2*oneOverC[m]*((-1)**(m/2)) * special.jv(m,bb)
del m
# Set the z dependence
V[M*(N+1): M*(N+2)] = V[M*(N-1):M*N]
return Amp*V
def mk_free_slip_W():
V = mk_free_slip_V()/Amp
W = zeros((M*(2*N+1)), dtype='D')
chebDY = mk_single_diffy()
W[M*(N-1): M*N] = 0.5j*(-dot(chebDY, V[M*(N-1): M*N]))
W[M*(N+1): M*(N+2)] = -0.5j*(-dot(chebDY, V[M*(N-1): M*N]))
return Amp*W / gamma
def mk_pressure_gradient():
"""
The free slip pressure gradient which sustains the flow
dPdx = - bb^2 sin(bb * y)
"""
dPdx = zeros(M*(2*N+1) ,dtype='D')
for m in range(1,M,2):
dPdx[M*N+m] = 2*oneOverC[m]*((-1)**((m-1)/2))* special.jv(m,pi/2.)
del m
return -((pi**2) / 4.)*dPdx
def solve_eq1():
"""Oldroyd-B Equation independent of U
Linearly solves system of equations for vector containing Cyy, Czz, Cyz"""
#RHS of equation
RHS = zeros(3*vecLen,dtype='D')
RHS[N*M] = oneOverWeiss
RHS[vecLen + N*M] = oneOverWeiss
# Make the Jacobian:
jacobian = zeros((3*vecLen, 3*vecLen), dtype='complex')
# (GRAD - 2dVdy + I/Wi)*dCyy
jacobian[0:vecLen, 0:vecLen] = \
GRAD - 2*MMDYV + oneOverWeiss*eye(vecLen, vecLen)
# 0*dCzz
# (-2dVdz)*dCyz
jacobian[0:vecLen, 2*vecLen:3*vecLen] = -2*MMDZV
# 2nd block of rows
# 0*dCyy
# (GRAD - 2*MMDZW + I/Wi)*dCzz
jacobian[vecLen:2*vecLen, vecLen:2*vecLen] = \
GRAD - 2*MMDZW + oneOverWeiss*eye(vecLen, vecLen)
# (-2*dWdy)*dCyz
jacobian[vecLen:2*vecLen, 2*vecLen:3*vecLen] = -2*MMDYW
# 3rd block of rows
# (-dWdy)*dCyy
jacobian[2*vecLen:3*vecLen, 0:vecLen] = -MMDYW
# (-dVdz)*dCzz
jacobian[2*vecLen:3*vecLen, vecLen:2*vecLen] = -MMDZV
# (GRAD + I/Wi)*dCyz
jacobian[2*vecLen:3*vecLen, 2*vecLen:3*vecLen] = \
GRAD + oneOverWeiss*eye(vecLen, vecLen)
return linalg.solve(jacobian, RHS)
def solve_eq2(x):
"""use functions to find the residuals vector for the equation containing U"""
#cut x into U, and the Conformation tensor arrays
U = (x[0:vecLen])
conxx = (x[vecLen: 2*vecLen])
conxy = (x[2*vecLen: 3*vecLen])
conxz = (x[3*vecLen: 4*vecLen])
#calculate the stress tensor components, which are used to solve
#the equations
tauxx = oneOverWeiss*conxx
tauxx[N*M] -= oneOverWeiss
tauxy = oneOverWeiss*conxy
tauxz = oneOverWeiss*conxz
#some useful matrices to have:
MMDYU = prod_mat(dot(MDY, U))
MMDZU = prod_mat(dot(MDZ, U))
#calculate the equations
#xx 0 = v.grad(Cxx) - 2(Cxy.dy.U + CxzdzU) + tauxx
resxx = (dot(GRAD, conxx)
- 2*dot(MMDYU, conxy)
- 2*dot(MMDZU, conxz)
+ tauxx)
# xy 0 = (v.grad)Cxy - CyydyU - CxydyV - CxzdzV - CyzdzU + tauxy"""
resxy = ( dot(GRAD, conxy)
- dot(MMDYU, conyy)
- dot(MMDZU, conyz)
- dot(MMDYV, conxy)
- dot(MMDZV, conxz)
+ tauxy )
# xz 0 = (v.grad)Cxz - CxydyW - CxzDzW - CyzdyU - CzzdzU + tauxz"""
resxz = ( dot(GRAD, conxz)
- dot(MMDYW, conxy)
- dot(MMDZW, conxz)
- dot(MMDYU, conyz)
- dot(MMDZU, conzz)
+ tauxz )
# Navier-Stokes 0 = -Re*(v.grad)U + beta.laplacian + (1-beta).div.tau"""
resNS = ( -Re*dot(GRAD, U) + beta*dot(LAPLACIAN, U)
+ (1-beta)*(dot(MDY, tauxy) + dot(MDZ,tauxz))
- dPdx )
# Impose Boundary condition equations
# Free slip so we need dUdy = 0 everywhere, and u_0,0 (the y,z independent
# part) must be zero?
for k in range (2*N+1):
resNS[k*M + M-2] = dot(DERIVTOP, U[k*M:k*M + M])
resNS[k*M + M-1] = dot(DERIVBOT, U[k*M:k*M + M])
del k
resNS[N*M] = 0
# make residuals vector in 1D again
residuals = zeros(4*vecLen, dtype='complex')
residuals[0:vecLen] = resNS
residuals[vecLen:2*vecLen] = resxx
residuals[2*vecLen:3*vecLen] = resxy
residuals[3*vecLen:4*vecLen] = resxz
#make the Jacobian:
jacobian = zeros((4*vecLen,4*vecLen), dtype='complex')
#First row of blocks, for U equation:
#-Re*(Grad)dU
jacobian[0:vecLen, 0:vecLen] = -Re*GRAD + beta*LAPLACIAN
#0*dCxx
#((1-beta)1/Wi*d/dy)dCxy
jacobian[0:vecLen, 2*vecLen:3*vecLen] = \
(1-beta)*oneOverWeiss*MDY
#((1-beta)1/wi*d/dz)dCxz
jacobian[0:vecLen, 3*vecLen:4*vecLen] = \
(1-beta)*oneOverWeiss*MDZ
#2nd Row of blocks, for conxx equation:
#(-2conxy*d/dy -2conxz*d/dz)dU
jacobian[vecLen:2*vecLen, 0:vecLen] = \
-2*( dot(prod_mat(conxy), MDY) + dot(prod_mat(conxz), MDZ) )
#(GRAD + I/Wi)dCxx
jacobian[vecLen:2*vecLen, vecLen:2*vecLen] = \
GRAD + oneOverWeiss*eye(vecLen,vecLen, dtype='complex')
#(-2dUdy)dCxy
jacobian[vecLen:2*vecLen, 2*vecLen:3*vecLen] = \
-2*( MMDYU )
#(-2dUdz)dCxz
jacobian[vecLen:2*vecLen, 3*vecLen:4*vecLen] = \
-2*( MMDZU )
#Third row of blocks, for conxy equation:
#(-Cyy*d/dy -Cyz*d/dz)dU
jacobian[2*vecLen:3*vecLen, 0:vecLen] = \
- dot(prod_mat(conyy), MDY) - dot(prod_mat(conyz), MDZ)
#0*dCxx
#(GRAD - dVdy)*dCxy
jacobian[2*vecLen:3*vecLen, 2*vecLen:3*vecLen] = \
( GRAD - MMDYV + oneOverWeiss*eye(vecLen,vecLen, dtype='complex') )
#(-dV/dz)*dCxz
jacobian[2*vecLen:3*vecLen, 3*vecLen:4*vecLen] = \
-MMDZV
#4th row of blocks, conxz equation:
#(-Czz*d/dz -Cyz*d/dy)*dU
jacobian[3*vecLen:4*vecLen, 0:vecLen] = \
-dot(prod_mat(conzz), MDZ) - dot(prod_mat(conyz), MDY)
#(0)*dCxx
#(-dW/dy)*dCxy
jacobian[3*vecLen:4*vecLen, 2*vecLen:3*vecLen] = \
-MMDYW
#(Grad - dW/dz)*dCxz
jacobian[3*vecLen:4*vecLen, 3*vecLen:4*vecLen] = \
( GRAD - MMDZW + oneOverWeiss*eye(vecLen,vecLen, dtype='complex') )
#Apply BC's in the Jacobian
for n in range(2*N+1):
jacobian[n*M + M-2, 0 : 4*vecLen ] = \
concatenate( (zeros(n*M), DERIVTOP, zeros((2*N-n)*M+3*vecLen)) )
jacobian[n*M + M-1, 0 : 4*vecLen ] = \
concatenate( (zeros(n*M), DERIVBOT, zeros((2*N-n)*M+3*vecLen)) )
del n
# Free slip requires an extra restriction on u_0,0 (the constant flow in
# y,z) u_0,0 = 0?
jacobian[N*M, :] = 0
jacobian[N*M, N*M] = 1
#my_mc.matrix_checker(jacobian, vecLen, False)
return (jacobian, residuals)
def NR_solve(the_eq, xguess):
"""use Newton-Raphson to solve """
while True:
(J_x0, f_x0) = the_eq(xguess)
dx = linalg.solve(J_x0, -f_x0)
xguess = xguess + dx
print linalg.norm(f_x0, 2)
if (linalg.norm(f_x0,2) < NRdelta): break
return xguess
def save_pickle(array, name):
f = open(name, 'w')
pickle.dump(array, f)
f.close()
#
# MAIN
#
print """
----------------------------------------
N = {0}
M = {1}
Re = {2}
beta = {3}
Weiss = {4}
amp = {5}
gamma = {6}
----------------------------------------
""". format(N, M, Re, beta, Weiss, Amp, pi/piDivide)
gamma = pi / piDivide
p = optimize.fsolve(lambda p: p*tan(p) + gamma*tanh(gamma), 2)
zLength = 2.*pi/gamma
vecLen = M*(2*N+1)
NRdelta = 0.00001
# Set the oneOverC function: 1/2 for m=0, 1 elsewhere:
oneOverC = ones(M)
oneOverC[0] = 1. / 2.
#set up the CFunc function: 2 for m=0, 1 elsewhere:
CFunc = ones(M)
CFunc[0] = 2.
#make the differentiation matrices:
MDY = mk_diff_y()
MDYY = dot(MDY,MDY)
MDZ = mk_diff_z()
MDZZ = dot(MDZ,MDZ)
V = mk_free_slip_V()
W = mk_free_slip_W()
U = zeros(vecLen, dtype='D')
dPdx = mk_pressure_gradient()
pickle.dump(dPdx, open('dPdx.pickle', 'w'))
GRAD = dot(prod_mat(V),MDY) + dot(prod_mat(W),MDZ)
LAPLACIAN = dot(MDY,MDY) + dot(MDZ,MDZ)
MMDYV = prod_mat(dot(MDY, V))
MMDZV = prod_mat(dot(MDZ, V))
MMDYW = prod_mat(dot(MDY, W))
MMDZW = prod_mat(dot(MDZ, W))
#Boundary arrays:
BTOP = ones(M)
BBOT = ones(M)
BBOT[1:M:2] = -1
singleDY = mk_single_diffy()
DERIVTOP = zeros((M), dtype='complex')
DERIVBOT = zeros((M), dtype='complex')
for j in range(M):
DERIVTOP[j] = dot(BTOP, singleDY[:,j])
DERIVBOT[j] = dot(BBOT, singleDY[:,j])
del j
oneOverWeiss = 1. / Weiss
#Guess conformation tensor:
conxx = zeros(vecLen, dtype='complex')
conyy = zeros(vecLen, dtype='complex')
conzz = zeros(vecLen, dtype='complex')
conxy = zeros(vecLen, dtype='complex')
conxz = zeros(vecLen, dtype='complex')
conyz = zeros(vecLen, dtype='complex')
#solve first equation:
x1 = solve_eq1()
conyy = x1[0:vecLen]
conzz = x1[vecLen:2*vecLen]
conyz = x1[2*vecLen:3*vecLen]
#solve second equation:
x2 = zeros(4*vecLen, dtype='complex')
#solve equation 2:
while True:
(J_x0, f_x0) = solve_eq2(x2)
dx = linalg.solve(J_x0, -f_x0)
x2 = x2 + dx
print linalg.norm(f_x0, 2)
if (linalg.norm(f_x0,2) < NRdelta): break
U = x2[0:vecLen]
conxx=x2[1*vecLen:2*vecLen]
conxy=x2[2*vecLen:3*vecLen]
conxz=x2[3*vecLen:4*vecLen]
save_pickle((U,V,W,conxx,conyy,conzz,conxy,conxz,conyz), filename)