-
Notifications
You must be signed in to change notification settings - Fork 0
/
ram_cluttered_big_control.py
67 lines (57 loc) · 1.8 KB
/
ram_cluttered_big_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#import matplotlib
#matplotlib.use('Agg')
from data.mnist import mnistData
from data.multithread import mtWrapper
import numpy as np
import pdb
batch_size = 32
device = "/gpu:1"
mt = False
#Get object from which tensorflow will pull data from
#TODO cross validation
path = "/home/slundquist/mountData/datasets/mnist"
if(mt):
#Make new class based on mnist class
mt_mnistData = mtWrapper(mnistData, batch_size)
#Instantiate class
dataObj = mt_mnistData(path, translateSize=(100, 100), clutterImg=True, numClutter=8)
else:
dataObj = mnistData(path, translateSize=(100, 100), clutterImg=True, numClutter=8)
#Conv control
from params.conv import ConvParams
params = ConvParams()
#Overwrite various params
params.device = device
params.original_size = dataObj.inputShape
params.num_train_examples = dataObj.num_train_examples
params.run_dir = params.out_dir + "/conv_cluttered_big/"
params.num_steps = 2000001
params.lr_decay = .999
params.lr_start = 1e-3
params.num_fc_units = 86
from tf.convBaseline import convBaseline
tfObj = convBaseline(params)
tfObj.trainModel(dataObj)
tfObj.evalModelBatch(dataObj, writeOut=True)
print("Done run")
tfObj.closeSess()
#FC control
from params.fc import FcParams
params = FcParams()
#Overwrite various params
params.device = device
params.original_size = dataObj.inputShape
params.num_train_examples = dataObj.num_train_examples
params.num_steps = 2000001
params.lr_decay = .999
params.lr_start = 1e-3
from tf.fcBaseline import fcBaseline
for hidden_units in [64, 256]:
params.num_fc1_units = hidden_units
params.num_fc2_units = hidden_units
params.run_dir = params.out_dir + "/fc_cluttered_" + str(hidden_units) + "/"
tfObj = fcBaseline(params)
tfObj.trainModel(dataObj)
tfObj.evalModelBatch(dataObj, writeOut=True)
print("Done run")
tfObj.closeSess()