-
Notifications
You must be signed in to change notification settings - Fork 1
/
dirac.F90
278 lines (265 loc) · 10.9 KB
/
dirac.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
module dirac
use params
use gammamatrices
implicit none
save
contains
pure subroutine dslash(Phi,R,u,am,imass)
!
! calculates Phi = M*R
!
! complex, intent(in) :: u(0:ksize+1,0:ksize+1,0:ksizet+1,3)
! complex, intent(in) :: Phi(kthird,0:ksize+1,0:ksize+1,0:ksizet+1,4)
! complex, intent(in) :: R(kthird,0:ksize+1,0:ksize+1,0:ksizet+1,4)
! complex :: zkappa
complex(dp), intent(in) :: u(0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 3)
complex(dp), intent(out) :: Phi(kthird, 0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
complex(dp), intent(in) :: R(kthird, 0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
integer, intent(in) :: imass
real, intent(in) :: am
complex(dp) :: zkappa
real :: diag
integer :: ixup, iyup, itup, ix, iy, it, idirac, mu, igork
! write(6,*) 'hi from dslash'
!
! diagonal term
diag=(3.0-am3)+1.0
Phi=diag*R
!
! Wilson term (hermitian) and Dirac term (antihermitian)
do mu=1,3
ixup = kdelta(1, mu)
iyup = kdelta(2, mu)
itup = kdelta(3, mu)
do idirac=1,4
igork=gamin(mu,idirac)
do it = 1,ksizet_l
do iy = 1,ksizey_l
do ix = 1,ksizex_l
Phi(:,ix,iy,it,idirac)=Phi(:,ix,iy,it,idirac) &
! Wilson term (hermitian)
& -akappa*(u(ix,iy,it,mu) &
& * R(:, ix+ixup, iy+iyup, it+itup, idirac) &
& + conjg(u(ix-ixup, iy-iyup, it-itup, mu)) &
& * R(:, ix-ixup, iy-iyup, it-itup, idirac)) &
! Dirac term (antihermitian)
& + gamval(mu,idirac) * &
& (u(ix,iy,it,mu) &
& * R(:, ix+ixup, iy+iyup, it+itup, igork) &
& - conjg(u(ix-ixup, iy-iyup, it-itup, mu)) &
& * R(:, ix-ixup, iy-iyup, it-itup, igork))
enddo
enddo
enddo
enddo
enddo
!
! s-like term exploiting projection
Phi(1:kthird-1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& = Phi(1:kthird-1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& - R(2:kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
Phi(2:kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& = Phi(2:kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& - R(1:kthird-1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
!
! Mass term (couples the two walls unless imass=5)
if (imass.eq.1) then
zkappa=cmplx(am,0.0)
Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) = &
& Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& + zkappa * R(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) = &
& Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) + &
& zkappa * R(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
elseif (imass.eq.3) then
zkappa=cmplx(0.0,-am)
Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) = &
& Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& - zkappa * R(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) = &
& Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& + zkappa * R(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
elseif (imass.eq.5) then
zkappa=cmplx(0.0,-am)
! do idirac=3,4
! igork=gamin(5,idirac)
Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) = &
& Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& - zkappa * R(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
! Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, idirac) = &
! & Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, idirac) &
! & + 2 * zkappa * gamval(5,idirac) * R(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, igork)
! enddo
! do idirac=1,2
! igork=gamin(5,idirac)
Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) = &
& Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& - zkappa * R(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
! Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, idirac) = &
! & Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, idirac)
! & + 2 * zkappa * gamval(5,idirac) * R(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, igork)
! enddo
endif
!
return
end subroutine dslash
!***********************************************************************
pure subroutine dslashd_local(am,Phi,R,imass)
implicit none
complex(dp), intent(out) :: Phi(kthird, 0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
complex(dp), intent(in) :: R(kthird, 0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
real :: diag
complex(dp) :: zkappa
real, intent(in) :: am
integer, intent(in) :: imass
diag=(3.0-am3)+1.0
Phi(:,1:ksizex_l,1:ksizey_l,1:ksizet_l,:) = diag * R(:,1:ksizex_l,1:ksizey_l,1:ksizet_l,:)
! s-like term exploiting projection
Phi(1:kthird-1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& = Phi(1:kthird-1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& - R(2:kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
Phi(2:kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& = Phi(2:kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& - R(1:kthird-1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
!
! Mass term (couples the two walls unless imass=5)
if(imass.eq.1)then
zkappa=cmplx(am,0.0)
Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) = &
& Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& + zkappa * R(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) = &
& Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& + zkappa * R(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
elseif(imass.eq.3)then
zkappa = cmplx(0.0,am)
Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) = &
& Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& + zkappa * R(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) = &
& Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& - zkappa * R(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
elseif(imass.eq.5)then
zkappa = cmplx(0.0,am)
Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) = &
& Phi(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2) &
& - zkappa * R(kthird, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4)
Phi(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) = &
& Phi(1,1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 3:4) &
& - zkappa * R(1, 1:ksizex_l, 1:ksizey_l, 1:ksizet_l, 1:2)
endif
return
end subroutine dslashd_local
#ifdef MPI
subroutine dslashd(Phi,R,u,am,imass,reqs_R)
#else
pure subroutine dslashd(Phi,R,u,am,imass)
#endif
use comms, only : complete_halo_update
complex(dp), intent(in) :: u(0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 3)
complex(dp), intent(out) :: Phi(kthird, 0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
complex(dp), intent(in) :: R(kthird, 0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
integer, intent(in) :: imass
real, intent(in) :: am
!complex(dp) :: zkappa
!real :: diag
integer :: ixup, iyup, itup, ix, iy, it, idirac, mu, igork
#ifdef MPI
integer, dimension(12),intent(inout), optional :: reqs_R
#endif
!
! taking care of the part that does not need the halo
! diagonal term (hermitian)
call dslashd_local(am,Phi,R,imass)
! call complete_halo_update_5(4, phi)
!
! taking care of the part that does need the halo
! wilson term (hermitian) and dirac term (antihermitian)
#ifdef MPI
if(present(reqs_r)) then
call complete_halo_update(reqs_R)
endif
#endif
do mu=1,3
ixup = kdelta(1, mu)
iyup = kdelta(2, mu)
itup = kdelta(3, mu)
do idirac=1,4
igork=gamin(mu,idirac)
do it = 1,ksizet_l
do iy = 1,ksizey_l
do ix = 1,ksizex_l
phi(:,ix,iy,it,idirac)=phi(:,ix,iy,it,idirac) &
! wilson term (hermitian)
& - akappa * (u(ix,iy,it,mu) &
& * r(:, ix+ixup, iy+iyup, it+itup, idirac) &
& + conjg(u(ix-ixup, iy-iyup, it-itup, mu)) &
& * r(:, ix-ixup, iy-iyup, it-itup, idirac)) &
! dirac term (antihermitian)
& - gamval(mu,idirac) * &
& (u(ix,iy,it,mu) &
& * r(:, ix+ixup, iy+iyup, it+itup, igork) &
& - conjg(u(ix-ixup, iy-iyup, it-itup, mu)) &
& * r(:, ix-ixup, iy-iyup, it-itup, igork))
enddo
enddo
enddo
enddo
enddo
!
return
#ifdef MPI
end subroutine dslashd
#else
end subroutine dslashd
#endif
!***********************************************************************
pure subroutine dslash2d(phi,r,u)
! calculates phi = m*r
!
! complex, intent(in) :: u(ksizex_l, ksizey_l, ksizet_l, 3)
! complex, intent(out) :: phi(ksizex_l,ksizey_l,ksizet_l, 4)
! complex, intent(in) :: r(ksizex_l,ksizey_l,ksizet_l,4)
complex(dp), intent(in) :: u(0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 3)
complex(dp), intent(out) :: phi(0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
complex(dp), intent(in) :: r(0:ksizex_l+1, 0:ksizey_l+1, 0:ksizet_l+1, 4)
integer :: ix, iy, it, idirac, mu, ixup, iyup, igork
real(dp) :: diag
! diagonal term
diag=2.0d0
phi = diag * r
! wilson and dirac terms
do mu=1,2
ixup=kdelta(1,mu)
iyup=kdelta(2,mu)
!
do idirac=1,4
igork=gamin(mu,idirac)
do it=1,ksizet_l
do iy=1,ksizey_l
do ix=1,ksizex_l
phi(ix,iy,it,idirac) = &
! wilson term
& phi(ix,iy,it,idirac) &
& - akappa * (u(ix,iy,it,mu) * r(ix+ixup, iy+iyup, it, idirac) &
& + conjg(u(ix-ixup, iy-iyup, it, mu)) &
& * r(ix-ixup, iy-iyup, it, idirac)) &
! dirac term
& + gamval(mu,idirac) * &
& (u(ix,iy,it,mu)*r(ix+ixup, iy+iyup, it, igork) &
& - conjg(u(ix-ixup, iy-iyup, it,mu)) &
& * r(ix-ixup, iy-iyup, it, igork))
enddo
enddo
enddo
enddo
enddo
! call complete_halo_update_4(4, phi)
!
return
end subroutine dslash2d
!!***********************************************************************
! A Kronecker delta function
! Useful for calculating coordinate offsets
!***********************************************************************
end module dirac