-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalexnet.py
75 lines (59 loc) · 2.43 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, models, transforms
from torch.utils.data import DataLoader
# Load and preprocess the dataset
data_dir = 'data/fashion-mnist'
batch_size = 32
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # Normalize for AlexNet pre-trained model
])
train_dataset = datasets.FashionMNIST(data_dir, train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.FashionMNIST(data_dir, train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Load pre-trained AlexNet
alexnet = models.alexnet(pretrained=True)
# Freeze all layers except the last layer
for param in alexnet.parameters():
param.requires_grad = False
# Modify the last layer for Fashion-MNIST (10 classes)
alexnet.classifier[6] = nn.Linear(4096, 10)
# Use CrossEntropyLoss and Adam optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(alexnet.classifier[6].parameters(), lr=0.001)
# Train the model
def train_model(model, dataloaders, criterion, optimizer, num_epochs=10):
model.train()
for epoch in range(num_epochs):
running_loss = 0.0
for inputs, labels in dataloaders:
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloaders.dataset)
print(f'Epoch {epoch}/{num_epochs - 1}, Loss: {epoch_loss:.4f}')
# Move the model to GPU and train
alexnet = alexnet.cuda()
train_model(alexnet, train_loader, criterion, optimizer)
# Test the model
def evaluate_model(model, dataloader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in dataloader:
inputs, labels = inputs.cuda(), labels.cuda()
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy: {100 * correct / total:.2f}%')
evaluate_model(alexnet, test_loader)