-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvec2Text.py
224 lines (169 loc) · 4.82 KB
/
vec2Text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Vec2Text functions
# 20-Oct-2022
# Multiple imports
import base64
import collections
import gensim
import glob
import math
import numpy as np
import os
import random
import shutil
from os import listdir
from os.path import isfile, join
from pathlib import Path
from PIL import Image
from sentence_transformers import SentenceTransformer, util
from shutil import rmtree
from sklearn.cluster import KMeans
# Functions definitions
def calculate_dimensions(file, model):
"""
Calculate dimensions
"""
return image_embedding(file, model).shape[0]
def calculate_wcss(data):
"""
Clustering K Means algorithm from sci-kit learn
"""
data = np.array(data).reshape(-1, 1)
wcss = []
for n in range(2, 21):
kmeans = KMeans(n_clusters=n)
kmeans.fit(X=data)
wcss.append(kmeans.inertia_)
return wcss
def convert_vec_to_bucket_str(curVec, bucketRanges):
"""
Convert Vect Text To Bucket string
"""
vecStr = ''
for d in range(len(curVec)):
bucketVal = -1
idx = 0
for i in bucketRanges[d]:
if curVec[d] < i:
bucketVal = idx
break
idx += 1
vecStr += convert_field_num_to_string(d) + '_' + str(
bucketVal).replace('-', '~') + ' '
return vecStr.strip()
def convert_field_num_to_string(dim):
"""
Generate fake terms from
"""
dimStr = str(dim)
curStr = ''
for i in range(len(dimStr)):
curChar = dimStr[i]
if curChar == '0':
curStr += 'A'
elif curChar == '1':
curStr += 'B'
elif curChar == '2':
curStr += 'C'
elif curChar == '3':
curStr += 'D'
elif curChar == '4':
curStr += 'E'
elif curChar == '5':
curStr += 'F'
elif curChar == '6':
curStr += 'G'
elif curChar == '7':
curStr += 'H'
elif curChar == '8':
curStr += 'I'
elif curChar == '9':
curStr += 'J'
return curStr
def closest(lst, K):
"""
Find the closest cluster center index to a specified number (K)
"""
b = lst[min(range(len(lst)), key=lambda i: abs(lst[i] - K))]
return lst.index(b)
def find_cluster_centers(dimensions, vecDict):
"""
Get Cluster Centers
"""
clusterCenters = {}
idx = 0
for d in range(dimensions):
idx += 1
if idx % 10 == 0:
print('Processed', idx, 'of', dimensions)
numberOfClusters = optimal_number_of_clusters(
calculate_wcss(vecDict[str(d)]))
x = np.array(vecDict[str(d)])
km = KMeans(n_clusters=numberOfClusters)
km.fit(x.reshape(-1, 1))
cluster_centers = km.cluster_centers_
cluster_centers = sorted(cluster_centers.tolist())
clusterList = []
for cc in cluster_centers:
clusterList.append(cc[0])
clusterCenters[d] = clusterList
return clusterCenters
def get_files_in_dir(in_dir):
"""
Get files from a directory
"""
return [
os.path.join(dp, f) for dp, dn, filenames in os.walk(in_dir)
for f in filenames
]
def image_embedding(file, model):
"""
Encoding image file using sentence transformers OpenAI CLIP model
"""
img_emb = model.encode(Image.open(file))
return np.array(img_emb)
def initialize_vector_dictionary(dimensions):
"""
Initialize vector dictionary
"""
vecDict = {}
for d in range(dimensions):
vecDict[str(d)] = []
return vecDict
def openai_clip_model(clipmodel='clip-ViT-B-32'):
"""
Definition of the Open AI Clip model to use
"""
try:
print("Loading OpenAI Clip model:", clipmodel)
model = SentenceTransformer(clipmodel)
print("Done")
except:
print("[Error] Cannot load Open AI CLip model", clipmodel)
return model
def optimal_number_of_clusters(wcss):
"""
Get optimal Number of Clusters
"""
x1, y1 = 2, wcss[0]
x2, y2 = 20, wcss[len(wcss) - 1]
distances = []
for i in range(len(wcss)):
x0 = i + 2
y0 = wcss[i]
numerator = abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1)
denominator = math.sqrt((y2 - y1)**2 + (x2 - x1)**2)
distances.append(numerator / denominator)
return distances.index(max(distances)) + 2
def string_to_base64(content):
"""
String to Base 64
"""
return str(base64.b64encode(content.encode('ascii'))).replace("b'",
"").replace(
"'", "")
def text_embedding(query, model):
"""
Encoding text using sentence transformers OpenAI Clip model
"""
img_emb = model.encode(query)
return np.array(img_emb)