-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.c
509 lines (416 loc) · 15.9 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#define PROJECTION
#define RASTERIZATION
#define CLIPPING
#define INTERPOLATION
#define ZBUFFERING
#define ANIMATION
precision highp float;
uniform float time;
// Polygon / vertex functionality
const int MAX_VERTEX_COUNT = 8;
uniform ivec2 viewport;
struct Vertex {
vec3 position;
vec3 color;
};
struct Polygon {
// Numbers of vertices, i.e., points in the polygon
int vertexCount;
// The vertices themselves
Vertex vertices[MAX_VERTEX_COUNT];
};
// Appends a vertex to a polygon
void appendVertexToPolygon(inout Polygon polygon, Vertex element) {
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i == polygon.vertexCount) {
polygon.vertices[i] = element;
}
}
polygon.vertexCount++;
}
// Copy Polygon source to Polygon destination
void copyPolygon(inout Polygon destination, Polygon source) {
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
destination.vertices[i] = source.vertices[i];
}
destination.vertexCount = source.vertexCount;
}
// Get the i-th vertex from a polygon, but when asking for the one behind the last, get the first again
Vertex getWrappedPolygonVertex(Polygon polygon, int index) {
if (index >= polygon.vertexCount) index -= polygon.vertexCount;
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i == index) return polygon.vertices[i];
}
}
// Creates an empty polygon
void makeEmptyPolygon(out Polygon polygon) {
polygon.vertexCount = 0;
}
// Clipping part
#define ENTERING 0
#define LEAVING 1
#define OUTSIDE 2
#define INSIDE 3
int getCrossType(Vertex poli1, Vertex poli2, Vertex wind1, Vertex wind2) {
#ifdef CLIPPING
//calculate half space equation between wind1 and wind2 y= slope x + b
//to do that we have to find the slope and the c constant
float slope = (wind2.position[1]-wind1.position[1]) / (wind2.position[0]-wind1.position[0]);
float c = wind2.position[1]- (slope*wind2.position[0]);
//find value for each of the coordinates given
float resultPoli1 = (slope*poli1.position[0] + c - poli1.position[1])*(wind2.position[0]-wind1.position[0]);
float resultPoli2 = (slope*poli2.position[0] + c - poli2.position[1])*(wind2.position[0]-wind1.position[0]);
//For each of the different cases
if(resultPoli1 > 0.0 && resultPoli2 > 0.0){
return INSIDE;
}
if(resultPoli1 < 0.0 && resultPoli2 < 0.0){
return OUTSIDE;
}
if(resultPoli1 > 0.0 && resultPoli2 < 0.0){
return LEAVING;
}
if(resultPoli1 < 0.0 && resultPoli2 > 0.0){
return ENTERING;
}
#else
return INSIDE;
#endif
}
// This function assumes that the segments are not parallel or collinear.
Vertex intersect2D(Vertex a, Vertex b, Vertex c, Vertex d) {
#ifdef CLIPPING
//we have two parametric equations intersecting
// p1 = c + s*CD
// p2 = a + t*AB
// we have to find the values for which s = t
float AB1 = b.position[0]-a.position[0];
float AB2 = b.position[1]-a.position[1];
float AB3 = b.position[2]-a.position[2];
float a1 = a.position[0];
float a2 = a.position[1];
float a3 = a.position[2];
float CD1 = d.position[0]-c.position[0];
float CD2 = d.position[1]-c.position[1];
float CD3 = d.position[2]-c.position[2];
float c1 = c.position[0];
float c2 = c.position[1];
float c3 = c.position[2];
float s = (AB1*(a2-c2) + AB2*(c1 - a1)) / (CD2*AB1-CD1*AB2);
//now that we have s plug first parametric equation to get x y z values
Vertex intersection;
intersection.position[0] = c1 + s*CD1;
intersection.position[1] = c2 + s*CD2;
// z adjusted for interpolation
float d3 = d.position[2];
intersection.position[2] = 1.0 / ((1.0/c3) + s*((1.0/d3)-(1.0/c3)));
return intersection;
#else
return a;
#endif
}
void sutherlandHodgmanClip(Polygon unclipped, Polygon clipWindow, out Polygon result) {
Polygon clipped;
copyPolygon(clipped, unclipped);
// Loop over the clip window
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i >= clipWindow.vertexCount) break;
// Make a temporary copy of the current clipped polygon
Polygon oldClipped;
copyPolygon(oldClipped, clipped);
// Set the clipped polygon to be empty
makeEmptyPolygon(clipped);
// Loop over the current clipped polygon
for (int j = 0; j < MAX_VERTEX_COUNT; ++j) {
if (j >= oldClipped.vertexCount) break;
// Handle the j-th vertex of the clipped polygon. This should make use of the function
// intersect() to be implemented above.
#ifdef CLIPPING
Vertex p0 = getWrappedPolygonVertex(oldClipped , j);
Vertex p1 = getWrappedPolygonVertex(oldClipped , j+1);
Vertex clipWindow1 = getWrappedPolygonVertex(clipWindow , i);;
Vertex clipWindow2 = getWrappedPolygonVertex(clipWindow , i+1); ;
if(getCrossType(p0,p1,clipWindow1, clipWindow2) == 0) {
//entering
// add intersection and p1
appendVertexToPolygon(clipped, intersect2D(p0, p1, clipWindow1, clipWindow2));
appendVertexToPolygon(clipped, p1);
}
if(getCrossType(p0,p1,clipWindow1, clipWindow2) == 1) {
//leaving
appendVertexToPolygon(clipped, intersect2D(p0, p1, clipWindow1, clipWindow2));
}
if(getCrossType(p0,p1,clipWindow1, clipWindow2) == 2) {
//outside
//do not do anything
}
if(getCrossType(p0,p1,clipWindow1, clipWindow2) == 3){
//inside
appendVertexToPolygon(clipped, p1);
}
#else
appendVertexToPolygon(clipped, getWrappedPolygonVertex(oldClipped, j));
#endif
}
}
// Copy the last version to the output
copyPolygon(result, clipped);
}
// Rasterization and culling part
#define INNER_SIDE 0
#define OUTER_SIDE 1
// Assuming a clockwise (vertex-wise) polygon, returns whether the input point
// is on the inner or outer side of the edge (ab)
int edge(vec2 point, Vertex a, Vertex b) {
#ifdef RASTERIZATION
//calculate half space equation involves finding y = ax+c
float slope = (b.position[1]-a.position[1]) / (b.position[0]-a.position[0]);
//b = y/(-ax)
float c = a.position[1]- (slope*a.position[0]);
//Equation = ax + b - y
//take in consideration the clockwise movement
float result = (slope*point[0] + c - point[1])*(b.position[0]-a.position[0]);
if(result > 0.0){
return INNER_SIDE;
}
#endif
return OUTER_SIDE;
}
// Returns if a point is inside a polygon or not
bool isPointInPolygon(vec2 point, Polygon polygon) {
// Don't evaluate empty polygons
if (polygon.vertexCount == 0) return false;
// Check against each edge of the polygon
bool rasterise = true;
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
#ifdef RASTERIZATION
Vertex a = getWrappedPolygonVertex(polygon,i);
Vertex b = getWrappedPolygonVertex(polygon,i+1);
int halfTest = edge(point, a, b);
if(halfTest == OUTER_SIDE){
rasterise = false;
}
#else
rasterise = false;
#endif
}
}
return rasterise;
}
bool isPointOnPolygonVertex(vec2 point, Polygon polygon) {
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
ivec2 pixelDifference = ivec2(abs(polygon.vertices[i].position.xy - point) * vec2(viewport));
int pointSize = viewport.x / 200;
if( pixelDifference.x <= pointSize && pixelDifference.y <= pointSize) {
return true;
}
}
}
return false;
}
float triangleArea(vec2 a, vec2 b, vec2 c) {
// https://en.wikipedia.org/wiki/Heron%27s_formula
float ab = length(a - b);
float bc = length(b - c);
float ca = length(c - a);
float s = (ab + bc + ca) / 2.0;
return sqrt(max(0.0, s * (s - ab) * (s - bc) * (s - ca)));
}
Vertex interpolateVertex(vec2 point, Polygon polygon) {
float weightSum = 0.0;
vec3 colorSum = vec3(0.0);
vec3 positionSum = vec3(0.0);
float depthSum = 0.0;
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
#if defined(INTERPOLATION) || defined(ZBUFFERING)
//For current vertex we will draw a triangle between 1 verteces before and after the current vertex and the point given.
//we then find the area of this triangle which is equal to the weight of how much the color of point A affects the point given.
//We add the weighted color of A to the color of the point given
//we repeat this for all verteces in the polygon
//A is the current point we are weighting
vec3 A = vec3(getWrappedPolygonVertex(polygon,i).position[0],getWrappedPolygonVertex(polygon,i).position[1],getWrappedPolygonVertex(polygon,i).position[2]);
vec3 Acolor = getWrappedPolygonVertex(polygon,i).color;
//First point in the triangle
vec2 B = vec2(getWrappedPolygonVertex(polygon,i+1).position[0],getWrappedPolygonVertex(polygon,i+1).position[1]);
//Second point in the triangle
vec2 C;
if(i == 0){
C = vec2(getWrappedPolygonVertex(polygon,polygon.vertexCount - 1).position[0],getWrappedPolygonVertex(polygon,polygon.vertexCount - 1).position[1]);
}else {
C = vec2(getWrappedPolygonVertex(polygon,i-1).position[0],getWrappedPolygonVertex(polygon,i-1).position[1]);
}
// find the area of triangle
float weightOfA = triangleArea(B,C,point);
#else
#endif
#ifdef ZBUFFERING
depthSum += weightOfA;
positionSum += A*weightOfA;
#endif
#ifdef INTERPOLATION
//add the weighted color
weightSum += weightOfA;
colorSum += Acolor*weightOfA;
#endif
}
}
Vertex result = polygon.vertices[0];
#ifdef INTERPOLATION
result.color = colorSum / weightSum;
#endif
#ifdef ZBUFFERING
result.position = positionSum / depthSum;
#endif
#if !defined(INTERPOLATION) && !defined(ZBUFFERING)
#endif
return result;
}
// Projection part
// Used to generate a projection matrix.
mat4 computeProjectionMatrix() {
mat4 projectionMatrix = mat4(1);
float aspect = float(viewport.x) / float(viewport.y);
float imageDistance = 0.5;
#ifdef PROJECTION
//using standard perspective projection seen in https://en.wikibooks.org/wiki/GLSL_Programming/Vertex_Transformations
// aspect ratio a is already given and n is imageDistance.
// d is found with angle of 0.69 radians obtained through trial and error to look like given picture
float d = 1.0/tan(0.63/2.0);
//assume f is infinite
float f = 10000.0;
projectionMatrix[0] = vec4(d/aspect,0,0,0);
projectionMatrix[1] = vec4(0,d,0,0);
projectionMatrix[2] = vec4(0,0,(imageDistance+f)/(imageDistance-f),-2.0*imageDistance*f/(imageDistance-f));
projectionMatrix[3] = vec4(0,0,-1,0);
#endif
return projectionMatrix;
}
// Used to generate a simple "look-at" camera.
mat4 computeViewMatrix(vec3 VRP, vec3 TP, vec3 VUV) {
mat4 viewMatrix = mat4(1);
#ifdef PROJECTION
//This was done following the slides on creating a general camera
// Define VPN as vector pointing away from the camera
vec3 VPN = TP - VRP;
// Generate the camera axes.
vec3 n = normalize(VPN);
vec3 u = normalize(cross(VUV, n));
vec3 v = normalize(cross(n, u));
//reference point
vec4 q = vec4(0,0,0,1.0);
vec3 t = vec3(- dot(VRP, u), - dot(VRP, v), - dot(VRP, n));
// add the camera axes to the view matrix including
viewMatrix[0] = vec4(u[0], v[0], n[0], q[0]);
viewMatrix[1] = vec4(u[1], v[1], n[1], q[1]);
viewMatrix[2] = vec4(u[2], v[2], n[2], q[2]);
viewMatrix[3] = vec4(t, q[3]);
#endif
return viewMatrix;
}
vec3 getCameraPosition() {
#ifdef ANIMATION
return vec3(0, 10.0*sin(time),10.0*cos(time));
#else
return vec3(0, 0, 10);
#endif
}
// Takes a single input vertex and projects it using the input view and projection matrices
vec3 projectVertexPosition(vec3 position) {
// Set the parameters for the look-at camera.
vec3 TP = vec3(0, 0, 0);
vec3 VRP = getCameraPosition();
vec3 VUV = vec3(0, 1, 0);
// Compute the view matrix.
mat4 viewMatrix = computeViewMatrix(VRP, TP, VUV);
// Compute the projection matrix.
mat4 projectionMatrix = computeProjectionMatrix();
#ifdef PROJECTION
mat4 transformation = projectionMatrix*viewMatrix;
vec4 newpos = transformation*vec4(position,1.0);
return vec3(newpos)/newpos[3];
#endif
}
// Projects all the vertices of a polygon
void projectPolygon(inout Polygon projectedPolygon, Polygon polygon) {
copyPolygon(projectedPolygon, polygon);
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
projectedPolygon.vertices[i].position = projectVertexPosition(polygon.vertices[i].position);
}
}
}
// Draws a polygon by projecting, clipping, ratserizing and interpolating it
void drawPolygon(
vec2 point,
Polygon clipWindow,
Polygon oldPolygon,
inout vec3 color,
inout float depth)
{
Polygon projectedPolygon;
projectPolygon(projectedPolygon, oldPolygon);
Polygon clippedPolygon;
sutherlandHodgmanClip(projectedPolygon, clipWindow, clippedPolygon);
if (isPointInPolygon(point, clippedPolygon)) {
Vertex interpolatedVertex =
interpolateVertex(point, projectedPolygon);
#if defined(ZBUFFERING)
// Put your code here
//if the z value of your interpolated vertex is smaller than the current depth
//color the pixel with the color of this interpolated vertex
if(depth > interpolatedVertex.position[2]){
color = interpolatedVertex.color;
depth = interpolatedVertex.position[2];
}
#else
// Put your code to handle z buffering here
color = interpolatedVertex.color;
depth = interpolatedVertex.position.z;
#endif
}
if (isPointOnPolygonVertex(point, clippedPolygon)) {
color = vec3(1);
}
}
// Main function calls
void drawScene(vec2 pixelCoord, inout vec3 color) {
color = vec3(0.3, 0.3, 0.3);
// Convert from GL pixel coordinates 0..N-1 to our screen coordinates -1..1
vec2 point = 2.0 * pixelCoord / vec2(viewport) - vec2(1.0);
Polygon clipWindow;
clipWindow.vertices[0].position = vec3(-0.65, 0.95, 1.0);
clipWindow.vertices[1].position = vec3( 0.65, 0.75, 1.0);
clipWindow.vertices[2].position = vec3( 0.75, -0.65, 1.0);
clipWindow.vertices[3].position = vec3(-0.75, -0.85, 1.0);
clipWindow.vertexCount = 4;
// Draw the area outside the clip region to be dark
color = isPointInPolygon(point, clipWindow) ? vec3(0.5) : color;
const int triangleCount = 2;
Polygon triangles[triangleCount];
triangles[0].vertices[0].position = vec3(-2, -2, 0.0);
triangles[0].vertices[1].position = vec3(4, 0, 3.0);
triangles[0].vertices[2].position = vec3(-1, 2, 0.0);
triangles[0].vertices[0].color = vec3(1.0, 0.5, 0.2);
triangles[0].vertices[1].color = vec3(0.8, 0.8, 0.8);
triangles[0].vertices[2].color = vec3(0.2, 0.5, 1.0);
triangles[0].vertexCount = 3;
triangles[1].vertices[0].position = vec3(3.0, 2.0, -2.0);
triangles[1].vertices[2].position = vec3(0.0, -2.0, 3.0);
triangles[1].vertices[1].position = vec3(-1.0, 2.0, 4.0);
triangles[1].vertices[1].color = vec3(0.2, 1.0, 0.1);
triangles[1].vertices[2].color = vec3(1.0, 1.0, 1.0);
triangles[1].vertices[0].color = vec3(0.1, 0.2, 1.0);
triangles[1].vertexCount = 3;
float depth = 10000.0;
// Project and draw all the triangles
for (int i = 0; i < triangleCount; i++) {
drawPolygon(point, clipWindow, triangles[i], color, depth);
}
}
void main() {
drawScene(gl_FragCoord.xy, gl_FragColor.rgb);
gl_FragColor.a = 1.0;
}