-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnets01.py
101 lines (86 loc) · 3.19 KB
/
nets01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# -*- coding: utf-8 -*-
# @Time: 2019-10-20 18:42
# @Author: Trible
import torch.nn as nn
import torch.nn.functional as F
class PNet(nn.Module):
def __init__(self):
super(PNet, self).__init__()
self.pre_layer = nn.Sequential(
nn.Conv2d(3, 10, kernel_size=3, stride=1), # conv1
nn.PReLU(), # PReLU1
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), # pool1
nn.Conv2d(10, 16, kernel_size=3, stride=1), # conv2
nn.PReLU(), # PReLU2
nn.Conv2d(16, 32, kernel_size=3, stride=1), # conv3
nn.PReLU() # PReLU3
)
self.conv4_1 = nn.Conv2d(32, 1, kernel_size=1, stride=1)
self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1, stride=1)
def forward(self, x):
x = self.pre_layer(x)
cond = F.sigmoid(self.conv4_1(x))
offset = self.conv4_2(x)
return cond, offset
class RNet(nn.Module):
def __init__(self):
super(RNet, self).__init__()
self.pre_layer = nn.Sequential(
nn.Conv2d(3, 28, kernel_size=3, stride=1), # conv1
nn.PReLU(), # prelu1
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), # pool1
nn.Conv2d(28, 48, kernel_size=3, stride=1), # conv2
nn.PReLU(), # prelu2
nn.MaxPool2d(kernel_size=3, stride=2), # pool2
nn.Conv2d(48, 64, kernel_size=2, stride=1), # conv3
nn.PReLU() # prelu3
)
self.conv4 = nn.Linear(64 * 3 * 3, 128) # conv4
self.prelu4 = nn.PReLU() # prelu4
# detection
self.conv5_1 = nn.Linear(128, 1)
# bounding box regression
self.conv5_2 = nn.Linear(128, 4)
def forward(self, x):
# backend
x = self.pre_layer(x)
x = x.view(x.size(0), -1)
x = self.conv4(x)
x = self.prelu4(x)
# detection
label = F.sigmoid(self.conv5_1(x))
offset = self.conv5_2(x)
return label, offset
class ONet(nn.Module):
def __init__(self):
super(ONet, self).__init__()
# backend
self.pre_layer = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1), # conv1
nn.PReLU(), # prelu1
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), # pool1
nn.Conv2d(32, 64, kernel_size=3, stride=1), # conv2
nn.PReLU(), # prelu2
nn.MaxPool2d(kernel_size=3, stride=2), # pool2
nn.Conv2d(64, 64, kernel_size=3, stride=1), # conv3
nn.PReLU(), # prelu3
nn.MaxPool2d(kernel_size=2, stride=2), # pool3
nn.Conv2d(64, 128, kernel_size=2, stride=1), # conv4
nn.PReLU() # prelu4
)
self.conv5 = nn.Linear(128 * 3 * 3, 256) # conv5
self.prelu5 = nn.PReLU() # prelu5
# detection
self.conv6_1 = nn.Linear(256, 1)
# bounding box regression
self.conv6_2 = nn.Linear(256, 4)
def forward(self, x):
# backend
x = self.pre_layer(x)
x = x.view(x.size(0), -1)
x = self.conv5(x)
x = self.prelu5(x)
# detection
label = F.sigmoid(self.conv6_1(x))
offset = self.conv6_2(x)
return label, offset