-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
258 lines (199 loc) · 7.68 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
from PIL import Image
from PIL import ImageDraw, ImageFont, ImageEnhance, ImageFilter
import numpy as np
from tool import utils
import nets01
# import nets
from torchvision import transforms
import time
import os
import random
class Detector:
def __init__(self, pnet_param="./param01/pnet.pt", rnet_param="./param01/rnet.pt", onet_param="./param01/onet.pt",
isCuda=True):
self.isCuda = isCuda
self.pnet = nets01.PNet()
self.rnet = nets01.RNet()
self.onet = nets01.ONet()
if self.isCuda:
self.pnet.cuda()
self.rnet.cuda()
self.onet.cuda()
self.pnet.load_state_dict(torch.load(pnet_param))
self.rnet.load_state_dict(torch.load(rnet_param))
self.onet.load_state_dict(torch.load(onet_param))
# print(self.pnet.state_dict()["pre_layer.0.weight"])
self.pnet.eval()
self.rnet.eval()
self.onet.eval()
self.__image_transform = transforms.Compose([
transforms.ToTensor()
])
def detect(self, image):
start_time = time.time()
pnet_boxes = self.__pnet_detect(image)
if pnet_boxes.shape[0] == 0:
return np.array([])
end_time = time.time()
t_pnet = end_time - start_time
# return pnet_boxes
start_time = time.time()
rnet_boxes = self.__rnet_detect(image, pnet_boxes)
# print( rnet_boxes)
if rnet_boxes.shape[0] == 0:
return np.array([])
end_time = time.time()
t_rnet = end_time - start_time
start_time = time.time()
onet_boxes = self.__onet_detect(image, rnet_boxes)
if onet_boxes.shape[0] == 0:
return np.array([])
end_time = time.time()
t_onet = end_time - start_time
t_sum = t_pnet + t_rnet + t_onet
print("total:{0} pnet:{1} rnet:{2} onet:{3}".format(t_sum, t_pnet, t_rnet, t_onet))
return onet_boxes
def __rnet_detect(self, image, pnet_boxes):
_img_dataset = []
_pnet_boxes = utils.convert_to_square(pnet_boxes)
for _box in _pnet_boxes:
_x1 = int(_box[0])
_y1 = int(_box[1])
_x2 = int(_box[2])
_y2 = int(_box[3])
img = image.crop((_x1, _y1, _x2, _y2))
img = img.resize((24, 24))
img_data = self.__image_transform(img)
_img_dataset.append(img_data)
del _box, _x1, _y1, _x2, _y2, img, img_data
img_dataset =torch.stack(_img_dataset)
if self.isCuda:
img_dataset = img_dataset.cuda()
_cls, _offset = self.rnet(img_dataset)
cls = _cls.cpu().data.numpy()
offset = _offset.cpu().data.numpy()
boxes = []
idxs, _ = np.where(cls > 0.7)
for idx in idxs:
_box = _pnet_boxes[idx]
_x1 = int(_box[0])
_y1 = int(_box[1])
_x2 = int(_box[2])
_y2 = int(_box[3])
ow = _x2 - _x1
oh = _y2 - _y1
x1 = _x1 + ow * offset[idx][0]
y1 = _y1 + oh * offset[idx][1]
x2 = _x2 + ow * offset[idx][2]
y2 = _y2 + oh * offset[idx][3]
boxes.append([x1, y1, x2, y2, cls[idx][0]])
del idx, _x1, _y1, _x2, _y2, _box, ow, oh, x1, x2, y1, y2
return utils.nms(np.array(boxes), 0.6, method="gaussian")
def __onet_detect(self, image, rnet_boxes):
_img_dataset = []
_rnet_boxes = utils.convert_to_square(rnet_boxes)
for _box in _rnet_boxes:
_x1 = int(_box[0])
_y1 = int(_box[1])
_x2 = int(_box[2])
_y2 = int(_box[3])
img = image.crop((_x1, _y1, _x2, _y2))
img = img.resize((48, 48))
img_data = self.__image_transform(img)
_img_dataset.append(img_data)
del _box, _x1, _y1, _x2, _y2, img, img_data
img_dataset = torch.stack(_img_dataset)
if self.isCuda:
img_dataset = img_dataset.cuda()
_cls, _offset = self.onet(img_dataset)
cls = _cls.cpu().data.numpy()
offset = _offset.cpu().data.numpy()
boxes = []
idxs, _ = np.where(cls > 0.959)
for idx in idxs:
_box = _rnet_boxes[idx]
_x1 = int(_box[0])
_y1 = int(_box[1])
_x2 = int(_box[2])
_y2 = int(_box[3])
ow = _x2 - _x1
oh = _y2 - _y1
x1 = _x1 + ow * offset[idx][0]
y1 = _y1 + oh * offset[idx][1]
x2 = _x2 + ow * offset[idx][2]
y2 = _y2 + oh * offset[idx][3]
boxes.append([x1, y1, x2, y2, cls[idx][0]])
del idx, _x1, _y1, _x2, _y2, _box, ow, oh, x1, x2, y1, y2
return utils.nms(np.array(boxes), 0.7, method="greedy", isMin=True)
def __pnet_detect(self, image):
boxes = []
img = image
w, h = img.size
min_side_len = min(w, h)
scale = 1
while min_side_len > 12:
img_data = self.__image_transform(img)
if self.isCuda:
img_data = img_data.cuda()
img_data.unsqueeze_(0)
_cls, _offest = self.pnet(img_data)
cls, offest = _cls[0][0].cpu().data, _offest[0].cpu().data
idxs = torch.nonzero(torch.gt(cls, 0.6))
for idx in idxs:
boxes.append(self.__box(idx, offest, cls[idx[0], idx[1]], scale))
del idx
scale *= 0.7
_w = int(w * scale)
_h = int(h * scale)
img = img.resize((_w, _h))
min_side_len = min(_w, _h)
del img_data, _cls, _offest, idxs, _w, _h
return utils.nms(np.array(boxes), 0.5, method='gaussian')
# 将回归量还原到原图上去
def __box(self, start_index, offset, cls, scale, stride=2, side_len=12):
_x1 = float(start_index[1] * stride) / scale
_y1 = float(start_index[0] * stride) / scale
_x2 = float(start_index[1] * stride + side_len) / scale
_y2 = float(start_index[0] * stride + side_len) / scale
ow = _x2 - _x1
oh = _y2 - _y1
_offset = offset[:, start_index[0], start_index[1]]
x1 = _x1 + ow * _offset[0]
y1 = _y1 + oh * _offset[1]
x2 = _x2 + ow * _offset[2]
y2 = _y2 + oh * _offset[3]
return [x1, y1, x2, y2, cls]
if __name__ == '__main__':
# img_list = os.listdir(r"F:\MTCNN\test")
# image_file = "F:\\MTCNN\\test\\"+random.sample(img_list, 1)[0]
pic = "29.jpg"
image_file = r"C:\Users\Administrator\Desktop\图片\%s" % pic
detector = Detector()
with Image.open(image_file) as im:
# boxes = detector.detect(im)
# print("----------------------------")
im = im.convert("RGB")
# im1.show()
# im1 = im1.crop((100, 990, 4970, 2610))
# im = im.crop((100, 986, 4970, 2610))
# im1 = ImageEnhance.Sharpness(im).enhance(2)
# im = ImageEnhance.Brightness(im).enhance(1.5)
# im = im.resize((int(im.size[0] * 0.68), int(im.size[1] * 0.68)), Image.ANTIALIAS)
boxes = detector.detect(im)
# del im1
print(im.size)
print(len(boxes))
imDraw = ImageDraw.Draw(im)
# ttfront = ImageFont.truetype('simhei.ttf', 8)
for box in boxes:
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
# print(box[4])
imDraw.text((x1+3, y1+2), str(round(box[4], 3)), (255, 0, 255), fontsize=8)
imDraw.rectangle((x1, y1, x2, y2), outline='red', width=3)
del x1, y1, x2, y2
im.save(r"C:\Users\Administrator\Desktop\results\%s" % pic)
im.show()