-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathexport_onnx.py
53 lines (46 loc) · 1.74 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) 2022, Zhendong Peng ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import click
import onnxruntime as ort
import torch
try:
from pyannote.audio import Model
except ImportError:
print("Please install pyannote: https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip")
@click.command()
@click.argument("checkpoint", type=click.Path(exists=True, file_okay=True))
@click.argument("onnx_model", type=click.Path(exists=False, file_okay=True))
def main(checkpoint: str, onnx_model: str):
model = Model.from_pretrained(checkpoint)
print(model)
dummy_input = torch.zeros(3, 1, 160000)
torch.onnx.export(
model,
dummy_input,
onnx_model,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {0: "B", 1: "C", 2: "T"},
},
)
opts = ort.SessionOptions()
opts.log_severity_level = 3
opts.optimized_model_filepath = onnx_model
# so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
# ORT_DISABLE_ALL, ORT_ENABLE_BASIC, ORT_ENABLE_EXTENDED, ORT_ENABLE_ALL
ort.InferenceSession(onnx_model, sess_options=opts)
if __name__ == "__main__":
main()