Skip to content

Latest commit

 

History

History
423 lines (309 loc) · 13.4 KB

README.md

File metadata and controls

423 lines (309 loc) · 13.4 KB

Instagram Analyzer - from IPython to Flask

Welcome!

This post details how to convert an IPython Notebook into a Flask web application. More specifically, we'll take an IPython Notebook, containing all of the data work, strip out the relevant parts to build out the Flask back-end, and then add a nice front-end so that the world can see your work.

ADD IMAGE

This is a guest post by Oleh Dubno with help from Christian Tirol. Oleh is a Python Developer from NYC, currently working at Quovo, a fintech startup. Christian is an Analyst working in New York City with the Analytics and Reporting Infrastructure teams at Adroit Digital.

Workflow

Before diving into Flask, take a look at, and interact with, the IPython Notebooks:

Make sure you understand the code in this Notebooks as they set the basis for the Flask app. Now, we can being the conversion process, from IPython to Flask:

  1. Part One: Set up the local development environment along with the basic Flask app.
  2. Part Two: Add in the back-end logic to access the Instagram API, process the data with Pandas/Numpy, and create the charts with Matplotlib.

Part One - Getting Started

Grab the boilerplate from the Github repo:

$ git clone [email protected]:realpython/instagram-analyzer.git
$ cd instagram-analyzer
$ git checkout tags/v1

Check out the dependencies and Python version as well as the project structure:

├── _config.py
├── app
│   ├── __init__.py
│   ├── forms.py
│   ├── instagram_analyze.py
│   ├── instagram_graphs.py
│   ├── static
│   │   ├── css
│   │   │   └── main.css
│   │   └── js
│   └── templates
│       ├── _base.html
│       ├── analysis.html
│       └── index.html
├── requirements.txt
└── run.py

Activate your virtualenv and install the dependencies:

$ virtualenv env
$ source env/bin/activate
$ pip install -r requirements.txt

Test this out before moving on to the second part:

$ python run.py

Navigate in your browser to localhost:5000, and you should see "Hello World!". Now, let's convert our IPython scripts over to the Flask app!

Part Two - IPython to Flask

Here we'll be pulling in the code from the IPython Notebook files, iteratively...

Instagram Registration

Before any work in Python, you’ll need to first register a new application with Instagram. First, sign up for Instagram (if necessary), and then log in. Once you’re logged in, you can set up an app from the Developer Portal. An arbitrary URL and URI can be used for the sake of this exercise.

Once you’ve registered a client, you should have your own Client ID, which will be used to connect to the API. Add this to the _config.py file, like so:

INSTAGRAM_CLIENT_ID = '0755d115c19d38939d357b33fe8138bc'

Finally, move the config file into "app" directory.

Data Extraction and Analysis

Within the instagram_analyze.py script, we will add the back-end logic from the first two IPython Notebooks - data extraction and data cleansing.

Start by installing the necessary packages:

$ pip install requests==2.6.2 pandas==0.16.1 matplotlib==1.4.3
$ pip freeze > requirements.txt

Now add the following code to instagram_analyze.py:

import requests
from pandas.io.json import json_normalize
import pandas as pd

from _config import INSTAGRAM_CLIENT_ID


def instagram_analyzer(query):
    base_url = "https://api.instagram.com/v1"
    url = '{0}/tags/{1}/media/recent?client_id={2}&count=30'.format(
        base_url, query, INSTAGRAM_CLIENT_ID)
    request = requests.get(url)
    json_results = request.json()
    results = []
    if 'data' in json_results:
        data = json_results['data']
        df_instance = json_normalize(data)
        results.append(df_instance)

    df = pd.DataFrame().append(results)

    cols = [
        'comments.count',
        'likes.count',
    ]
    df_cols = df[cols]
    df_clean = df_cols.rename(columns=lambda x: x.replace('.', ' ').title())

    return df_clean

Here we make a call to the Instagram API to pull in the thirty most recent Instagram posts. The posts are then added to a Pandas DataFrame and cleaned to better display the data.

Want to test this script? Add the following code to the bottom-

print(instagram_analyzer('javascript'))

-and then run the script-

$ python app/instagram_analyze.py

You should see something like:

Comments Count  Likes Count
0                1            8
1                0            7
2                0          116
3                1            8
4                0           11
5                0            8
6                0            6
7                0           11
8                0           16
9                0           28
10               0           15
11               0           20
12               0           40
13               1           21
14               5           15
15               1           43
16               0           12
17               3           48
18               3           24
19               3           66
20               5           76
21               4           40
22               2           19
23               1           33
24               0           30
25               1           26
26               1           46
27               1           26
28               7          158
29               2           20

Image comparing notebook to the script

Instagram Analyzer

Data Visualization

Next, let's integrate the third IPython Notebook into our app, which utilizes Matplotlib to create charts and graphs.

Add the following code to instagram_graphs.py:

import matplotlib.pyplot as plt

def instagram_graph(instagram_analyzed):

    fig = plt.figure(figsize=(8, 6))

    # Using subplots for multiple graphs
    plt.subplot2grid((3, 3), (0, 0), colspan=3, rowspan=1)
    instagram_analyzed['Comments Count'].plot(kind='bar', alpha=.55)
    plt.title("Total Comment Count Per Post", fontsize=20)
    plt.ylabel('Total Comments')
    plt.xlabel('Most Recent to Least Recent')

    plt.subplot2grid((3, 3), (1, 0), colspan=3, rowspan=1)
    instagram_analyzed['Likes Count'].plot(kind='bar', alpha=.55)
    plt.title("Total Like Count Per Post", fontsize=20)
    plt.xlabel('Most Recent to Least Recent')
    plt.ylabel('Total Likes')

    plt.subplot2grid((3, 3), (2, 0), colspan=3, rowspan=1)
    plt.hist(instagram_analyzed['Likes Count'])
    plt.title('Test Graph (Please Ignore)', fontsize=20)
    plt.xlabel('Amount of Posts')
    plt.ylabel('Likes')
    plt.rcParams["figure.figsize"]

    fig.tight_layout()

Routes

Here, we're defining the basic route structure, accepting POST and GET requests. In order to render the Matplotlib graphs as output, we'll pass the user_input as a .png inside of the route.

Update __init__.py like so:

from cStringIO import StringIO
from flask import Flask, render_template, request, url_for, redirect, \
    make_response
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.pyplot as plt

from instagram_analyze import instagram_analyzer
from instagram_graphs import instagram_graph
from forms import InstagramAnalyzer


app = Flask(__name__)
app.config.update(
    WTF_CSRF_ENABLED=True,
    SECRET_KEY='my precious'
)


# routes

@app.route('/', methods=['GET', 'POST'])
def main():
    form = InstagramAnalyzer(request.form)
    if form.validate_on_submit():
        text = form.instagram_analyze.data
        return redirect(url_for('instagram_analyze', user_input=text))
    return render_template('index.html', form=form)


@app.route("/instagram_analyze/<user_input>")
def instagram_analyze(user_input):
    return render_template(
        'analysis.html',
        input=user_input,
        filename=user_input+".png"  # create image title based on user input
    )


@app.route("/instagram_analyze/<image_name>.png")
def image(image_name):

    # create the DataFrame
    instagram_analyzed = instagram_analyzer(image_name)

    # format the DataFrame to display plots
    instagram_graph(instagram_analyzed)

    # render matplotlib image to Flask view
    canvas = FigureCanvas(plt.gcf())
    output = StringIO()
    canvas.print_png(output)

    # create response
    response = make_response(output.getvalue())
    response.mimetype = 'image/png'

    return response

Make sure to read through the inline comments in this script to better understand what's happening. With that, let's jump to the front-end...

HTML

ADD INFO ABOUT JINJA, LINK TO REAL PYTHON BLOG POST

In order to avoid repeating common parts of the HTML structure, we'll create a _base.py that employs template inheritance:

<!DOCTYPE html>
<html>
  <head>
    <meta charset='utf-8'>
    <title>Instagram Analyzer</title>
    <!-- styles -->
    <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css" rel="stylesheet">
    <link href="{{url_for('static', filename='./css/main.css')}}" rel="stylesheet" media="screen">
    {% block css %}{% endblock %}
  </head>
  <body>

    <div class="container">

      <br>

      <!-- messages -->
      {% with messages = get_flashed_messages(with_categories=true) %}
      {% if messages %}
      <div class="row">
        <div class="col-md-12">
          {% for category, message in messages %}
          <div class="alert alert-{{ category }}">
            <a class="close" title="Close" href="#" data-dismiss="alert">&times;</a>
            {{message}}
          </div>
          {% endfor %}
        </div>
      </div>
      {% endif %}
      {% endwith %}

      <!-- child template -->
      {% block content %}{% endblock %}

      <br>

      <!-- errors -->
      {% if error %}
        <p class="error"><strong>Error:</strong> {{ error }}</p>
      {% endif %}

    </div>

  </body>
</html>

Now let's create an index.html file, which extends from the base template:

{% extends "_base.html" %}
{% block content %}

<h1 class="text-center">Python Instagram Analyzer</h1>

<br>

<center>
  <form class="input" role="form" method="post" action="">
    {{ form.csrf_token }}
    <p>
      {{ form.instagram_analyze(class="form-control input-lg", placeholder="Enter Hashtag")}}
      <span class="error">
        {% if form.instagram_analyze.errors %}
          {% for error in form.instagram_analyze.errors %}
            {{ error }}
          {% endfor %}
        {% endif %}
      </span>
    </p>
    <button class="btn btn-default btn-lg" type="submit">Analyze!</button>
  </form>

</center>

{% endblock %}

Within the analysis.html file, the text that the end user submits in the form will be rendered as the image filename. Refer back to __init__.py to see this in action. We'll be displaying our matplotlib graphs inside an iframe and sourcing the filename as explained above.

{% extends "_base.html" %}

{% block content %}

<center>
  <h2>Hashtag:</h2>
  <div class="well input">{{ input }}</div>
  <h2>Analysis:</h2>
  <iframe src={{ filename }} frameborder="0" align="middle" height="600" width="800"></iframe>
  <h3><a href="/"> Search Again?</a></h3>
</center>

{% endblock %}

Forms

BRIEFLY EXPLAIN WHAT's HAPPENING HERE

from flask_wtf import Form
from wtforms import TextField
from wtforms.validators import DataRequired, length


class InstagramAnalyzer(Form):
    instagram_analyze = TextField(
        'Analyze', validators=[DataRequired(), length(min=2)])

Test

DETAIL HOW TO RUN THE APP

Conclusion

  1. WHAT DID WE LEARN?
  2. WHAT ELSE CAN WE DO? Modifications moving forward may include pulling in more than 30 most recent posts at a time, improving our HTML/CSS layout and upgrading the information revealed in the Matplotlib graphs.

Try it out: Instagram-Analyzer

Instagram Analyzer

Cheers!