forked from ChiWeiHsiao/DeepVO-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
130 lines (104 loc) · 4.15 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# predicted as a batch
from params import par
from model import DeepVO
import numpy as np
from PIL import Image
import glob
import os
import time
import torch
from data_helper import get_data_info, ImageSequenceDataset
from torch.utils.data import DataLoader
from helper import eulerAnglesToRotationMatrix
if __name__ == '__main__':
videos_to_test = ['04', '05', '07', '10', '09']
# Path
load_model_path = par.load_model_path #choose the model you want to load
save_dir = 'result/' # directory to save prediction answer
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Load model
M_deepvo = DeepVO(par.img_h, par.img_w, par.batch_norm)
use_cuda = torch.cuda.is_available()
if use_cuda:
M_deepvo = M_deepvo.cuda()
M_deepvo.load_state_dict(torch.load(load_model_path))
else:
M_deepvo.load_state_dict(torch.load(load_model_path, map_location={'cuda:0': 'cpu'}))
print('Load model from: ', load_model_path)
# Data
n_workers = 1
seq_len = int((par.seq_len[0]+par.seq_len[1])/2)
overlap = seq_len - 1
print('seq_len = {}, overlap = {}'.format(seq_len, overlap))
batch_size = par.batch_size
fd=open('test_dump.txt', 'w')
fd.write('\n'+'='*50 + '\n')
for test_video in videos_to_test:
df = get_data_info(folder_list=[test_video], seq_len_range=[seq_len, seq_len], overlap=overlap, sample_times=1, shuffle=False, sort=False)
df = df.loc[df.seq_len == seq_len] # drop last
dataset = ImageSequenceDataset(df, par.resize_mode, (par.img_w, par.img_h), par.img_means, par.img_stds, par.minus_point_5)
df.to_csv('test_df.csv')
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=n_workers)
gt_pose = np.load('{}{}.npy'.format(par.pose_dir, test_video)) # (n_images, 6)
# Predict
M_deepvo.eval()
has_predict = False
answer = [[0.0]*6, ]
st_t = time.time()
n_batch = len(dataloader)
for i, batch in enumerate(dataloader):
print('{} / {}'.format(i, n_batch), end='\r', flush=True)
_, x, y = batch
if use_cuda:
x = x.cuda()
y = y.cuda()
batch_predict_pose = M_deepvo.forward(x)
# Record answer
fd.write('Batch: {}\n'.format(i))
for seq, predict_pose_seq in enumerate(batch_predict_pose):
for pose_idx, pose in enumerate(predict_pose_seq):
fd.write(' {} {} {}\n'.format(seq, pose_idx, pose))
batch_predict_pose = batch_predict_pose.data.cpu().numpy()
if i == 0:
for pose in batch_predict_pose[0]:
# use all predicted pose in the first prediction
for i in range(len(pose)):
# Convert predicted relative pose to absolute pose by adding last pose
pose[i] += answer[-1][i]
answer.append(pose.tolist())
batch_predict_pose = batch_predict_pose[1:]
# transform from relative to absolute
for predict_pose_seq in batch_predict_pose:
# predict_pose_seq[1:] = predict_pose_seq[1:] + predict_pose_seq[0:-1]
ang = eulerAnglesToRotationMatrix([0, answer[-1][0], 0]) #eulerAnglesToRotationMatrix([answer[-1][1], answer[-1][0], answer[-1][2]])
location = ang.dot(predict_pose_seq[-1][3:])
predict_pose_seq[-1][3:] = location[:]
# use only last predicted pose in the following prediction
last_pose = predict_pose_seq[-1]
for i in range(len(last_pose)):
last_pose[i] += answer[-1][i]
# normalize angle to -Pi...Pi over y axis
last_pose[0] = (last_pose[0] + np.pi) % (2 * np.pi) - np.pi
answer.append(last_pose.tolist())
print('len(answer): ', len(answer))
print('expect len: ', len(glob.glob('{}{}/*.png'.format(par.image_dir, test_video))))
print('Predict use {} sec'.format(time.time() - st_t))
# Save answer
with open('{}/out_{}.txt'.format(save_dir, test_video), 'w') as f:
for pose in answer:
if type(pose) == list:
f.write(', '.join([str(p) for p in pose]))
else:
f.write(str(pose))
f.write('\n')
# Calculate loss
gt_pose = np.load('{}{}.npy'.format(par.pose_dir, test_video)) # (n_images, 6)
loss = 0
for t in range(len(gt_pose)):
angle_loss = np.sum((answer[t][:3] - gt_pose[t,:3]) ** 2)
translation_loss = np.sum((answer[t][3:] - gt_pose[t,3:6]) ** 2)
loss = (100 * angle_loss + translation_loss)
loss /= len(gt_pose)
print('Loss = ', loss)
print('='*50)