forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencodec.py
741 lines (616 loc) · 24.3 KB
/
encodec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
# Copyright © 2024 Apple Inc.
import functools
import json
import math
from pathlib import Path
from types import SimpleNamespace
from typing import List, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
import numpy as np
_lstm_kernel = mx.fast.metal_kernel(
name="lstm",
input_names=["x", "h_in", "cell", "hidden_size", "time_step", "num_time_steps"],
output_names=["hidden_state", "cell_state"],
header="""
template <typename T>
T sigmoid(T x) {
auto y = 1 / (1 + metal::exp(-metal::abs(x)));
return (x < 0) ? 1 - y : y;
}
""",
source="""
uint b = thread_position_in_grid.x;
uint d = hidden_size * 4;
uint elem = b * d + thread_position_in_grid.y;
uint index = elem;
uint x_index = b * num_time_steps * d + time_step * d + index;
auto i = sigmoid(h_in[index] + x[x_index]);
index += hidden_size;
x_index += hidden_size;
auto f = sigmoid(h_in[index] + x[x_index]);
index += hidden_size;
x_index += hidden_size;
auto g = metal::precise::tanh(h_in[index] + x[x_index]);
index += hidden_size;
x_index += hidden_size;
auto o = sigmoid(h_in[index] + x[x_index]);
cell_state[elem] = f * cell[elem] + i * g;
hidden_state[elem] = o * metal::precise::tanh(cell_state[elem]);
""",
)
def lstm_custom(x, h_in, cell, time_step):
assert x.ndim == 3, "Input to LSTM must have 3 dimensions."
out_shape = cell.shape
return _lstm_kernel(
inputs=[x, h_in, cell, out_shape[-1], time_step, x.shape[-2]],
output_shapes=[out_shape, out_shape],
output_dtypes=[h_in.dtype, h_in.dtype],
grid=(x.shape[0], h_in.size // 4, 1),
threadgroup=(256, 1, 1),
)
class LSTM(nn.Module):
def __init__(
self,
input_size: int,
hidden_size: int,
bias: bool = True,
):
super().__init__()
self.hidden_size = hidden_size
self.Wx = mx.zeros((4 * hidden_size, input_size))
self.Wh = mx.zeros((4 * hidden_size, hidden_size))
self.bias = mx.zeros((4 * hidden_size,)) if bias else None
def __call__(self, x, hidden=None, cell=None):
if self.bias is not None:
x = mx.addmm(self.bias, x, self.Wx.T)
else:
x = x @ self.Wx.T
all_hidden = []
B = x.shape[0]
cell = cell or mx.zeros((B, self.hidden_size), x.dtype)
for t in range(x.shape[-2]):
if hidden is None:
hidden = mx.zeros((B, self.hidden_size * 4), x.dtype)
else:
hidden = hidden @ self.Wh.T
hidden, cell = lstm_custom(x, hidden, cell, t)
all_hidden.append(hidden)
return mx.stack(all_hidden, axis=-2)
class EncodecConv1d(nn.Module):
"""Conv1d with asymmetric or causal padding and normalization."""
def __init__(
self,
config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
dilation: int = 1,
):
super().__init__()
self.causal = config.use_causal_conv
self.pad_mode = config.pad_mode
self.norm_type = config.norm_type
self.conv = nn.Conv1d(
in_channels, out_channels, kernel_size, stride, dilation=dilation
)
if self.norm_type == "time_group_norm":
self.norm = nn.GroupNorm(1, out_channels, pytorch_compatible=True)
self.stride = stride
# Effective kernel size with dilations.
self.kernel_size = (kernel_size - 1) * dilation + 1
self.padding_total = kernel_size - stride
def _get_extra_padding_for_conv1d(
self,
hidden_states: mx.array,
) -> mx.array:
length = hidden_states.shape[1]
n_frames = (length - self.kernel_size + self.padding_total) / self.stride + 1
n_frames = int(math.ceil(n_frames)) - 1
ideal_length = n_frames * self.stride + self.kernel_size - self.padding_total
return ideal_length - length
def _pad1d(
self,
hidden_states: mx.array,
paddings: Tuple[int, int],
mode: str = "zero",
value: float = 0.0,
):
if mode != "reflect":
return mx.pad(
hidden_states, paddings, mode="constant", constant_values=value
)
length = hidden_states.shape[1]
prefix = hidden_states[:, 1 : paddings[0] + 1][:, ::-1]
suffix = hidden_states[:, max(length - (paddings[1] + 1), 0) : -1][:, ::-1]
return mx.concatenate([prefix, hidden_states, suffix], axis=1)
def __call__(self, hidden_states):
extra_padding = self._get_extra_padding_for_conv1d(hidden_states)
if self.causal:
# Left padding for causal
hidden_states = self._pad1d(
hidden_states, (self.padding_total, extra_padding), mode=self.pad_mode
)
else:
# Asymmetric padding required for odd strides
padding_right = self.padding_total // 2
padding_left = self.padding_total - padding_right
hidden_states = self._pad1d(
hidden_states,
(padding_left, padding_right + extra_padding),
mode=self.pad_mode,
)
hidden_states = self.conv(hidden_states)
if self.norm_type == "time_group_norm":
hidden_states = self.norm(hidden_states)
return hidden_states
class EncodecConvTranspose1d(nn.Module):
"""ConvTranspose1d with asymmetric or causal padding and normalization."""
def __init__(
self,
config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
):
super().__init__()
self.causal = config.use_causal_conv
self.trim_right_ratio = config.trim_right_ratio
self.norm_type = config.norm_type
self.conv = nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride)
if config.norm_type == "time_group_norm":
self.norm = nn.GroupNorm(1, out_channels, pytorch_compatible=True)
self.padding_total = kernel_size - stride
def __call__(self, hidden_states):
hidden_states = self.conv(hidden_states)
if self.norm_type == "time_group_norm":
hidden_states = self.norm(hidden_states)
if self.causal:
padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
else:
padding_right = self.padding_total // 2
padding_left = self.padding_total - padding_right
end = hidden_states.shape[1] - padding_right
hidden_states = hidden_states[:, padding_left:end, :]
return hidden_states
class EncodecLSTM(nn.Module):
def __init__(self, config, dimension):
super().__init__()
self.lstm = [LSTM(dimension, dimension) for _ in range(config.num_lstm_layers)]
def __call__(self, hidden_states):
h = hidden_states
for lstm in self.lstm:
h = lstm(h)
return h + hidden_states
class EncodecResnetBlock(nn.Module):
"""
Residual block from SEANet model as used by EnCodec.
"""
def __init__(self, config, dim: int, dilations: List[int]):
super().__init__()
kernel_sizes = (config.residual_kernel_size, 1)
if len(kernel_sizes) != len(dilations):
raise ValueError("Number of kernel sizes should match number of dilations")
hidden = dim // config.compress
block = []
for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)):
in_chs = dim if i == 0 else hidden
out_chs = dim if i == len(kernel_sizes) - 1 else hidden
block += [nn.ELU()]
block += [
EncodecConv1d(config, in_chs, out_chs, kernel_size, dilation=dilation)
]
self.block = block
if getattr(config, "use_conv_shortcut", True):
self.shortcut = EncodecConv1d(config, dim, dim, kernel_size=1)
else:
self.shortcut = nn.Identity()
def __call__(self, hidden_states):
residual = hidden_states
for layer in self.block:
hidden_states = layer(hidden_states)
return self.shortcut(residual) + hidden_states
class EncodecEncoder(nn.Module):
"""SEANet encoder as used by EnCodec."""
def __init__(self, config):
super().__init__()
model = [
EncodecConv1d(
config, config.audio_channels, config.num_filters, config.kernel_size
)
]
scaling = 1
for ratio in reversed(config.upsampling_ratios):
current_scale = scaling * config.num_filters
for j in range(config.num_residual_layers):
model += [
EncodecResnetBlock(
config, current_scale, [config.dilation_growth_rate**j, 1]
)
]
model += [nn.ELU()]
model += [
EncodecConv1d(
config,
current_scale,
current_scale * 2,
kernel_size=ratio * 2,
stride=ratio,
)
]
scaling *= 2
model += [EncodecLSTM(config, scaling * config.num_filters)]
model += [nn.ELU()]
model += [
EncodecConv1d(
config,
scaling * config.num_filters,
config.hidden_size,
config.last_kernel_size,
)
]
self.layers = model
def __call__(self, hidden_states):
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
class EncodecDecoder(nn.Module):
"""SEANet decoder as used by EnCodec."""
def __init__(self, config):
super().__init__()
scaling = int(2 ** len(config.upsampling_ratios))
model = [
EncodecConv1d(
config,
config.hidden_size,
scaling * config.num_filters,
config.kernel_size,
)
]
model += [EncodecLSTM(config, scaling * config.num_filters)]
for ratio in config.upsampling_ratios:
current_scale = scaling * config.num_filters
model += [nn.ELU()]
model += [
EncodecConvTranspose1d(
config,
current_scale,
current_scale // 2,
kernel_size=ratio * 2,
stride=ratio,
)
]
for j in range(config.num_residual_layers):
model += [
EncodecResnetBlock(
config, current_scale // 2, (config.dilation_growth_rate**j, 1)
)
]
scaling //= 2
model += [nn.ELU()]
model += [
EncodecConv1d(
config,
config.num_filters,
config.audio_channels,
config.last_kernel_size,
)
]
self.layers = model
def __call__(self, hidden_states):
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
class EncodecEuclideanCodebook(nn.Module):
"""Codebook with Euclidean distance."""
def __init__(self, config):
super().__init__()
self.embed = mx.zeros((config.codebook_size, config.codebook_dim))
def quantize(self, hidden_states):
embed = self.embed.T
scaled_states = hidden_states.square().sum(axis=1, keepdims=True)
dist = -(
scaled_states
- 2 * hidden_states @ embed
+ embed.square().sum(axis=0, keepdims=True)
)
embed_ind = dist.argmax(axis=-1)
return embed_ind
def encode(self, hidden_states):
shape = hidden_states.shape
hidden_states = hidden_states.reshape((-1, shape[-1]))
embed_ind = self.quantize(hidden_states)
embed_ind = embed_ind.reshape(*shape[:-1])
return embed_ind
def decode(self, embed_ind):
return self.embed[embed_ind]
class EncodecVectorQuantization(nn.Module):
"""
Vector quantization implementation. Currently supports only euclidean distance.
"""
def __init__(self, config):
super().__init__()
self.codebook = EncodecEuclideanCodebook(config)
def encode(self, hidden_states):
return self.codebook.encode(hidden_states)
def decode(self, embed_ind):
return self.codebook.decode(embed_ind)
class EncodecResidualVectorQuantizer(nn.Module):
"""Residual Vector Quantizer."""
def __init__(self, config):
super().__init__()
self.codebook_size = config.codebook_size
hop_length = np.prod(config.upsampling_ratios)
self.frame_rate = math.ceil(config.sampling_rate / hop_length)
self.num_quantizers = int(
1000 * config.target_bandwidths[-1] // (self.frame_rate * 10)
)
self.layers = [
EncodecVectorQuantization(config) for _ in range(self.num_quantizers)
]
def get_num_quantizers_for_bandwidth(
self, bandwidth: Optional[float] = None
) -> int:
"""Return num_quantizers based on specified target bandwidth."""
bw_per_q = math.log2(self.codebook_size) * self.frame_rate
num_quantizers = self.num_quantizers
if bandwidth is not None and bandwidth > 0.0:
num_quantizers = int(max(1, math.floor(bandwidth * 1000 / bw_per_q)))
return num_quantizers
def encode(
self, embeddings: mx.array, bandwidth: Optional[float] = None
) -> mx.array:
"""
Encode a given input array with the specified frame rate at the given
bandwidth. The RVQ encode method sets the appropriate number of
quantizers to use and returns indices for each quantizer.
"""
num_quantizers = self.get_num_quantizers_for_bandwidth(bandwidth)
residual = embeddings
all_indices = []
for layer in self.layers[:num_quantizers]:
indices = layer.encode(residual)
quantized = layer.decode(indices)
residual = residual - quantized
all_indices.append(indices)
out_indices = mx.stack(all_indices, axis=1)
return out_indices
def decode(self, codes: mx.array) -> mx.array:
"""Decode the given codes to the quantized representation."""
quantized_out = None
for i, indices in enumerate(codes.split(codes.shape[1], axis=1)):
layer = self.layers[i]
quantized = layer.decode(indices.squeeze(1))
if quantized_out is None:
quantized_out = quantized
else:
quantized_out = quantized + quantized_out
return quantized_out
class EncodecModel(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.encoder = EncodecEncoder(config)
self.decoder = EncodecDecoder(config)
self.quantizer = EncodecResidualVectorQuantizer(config)
def _encode_frame(
self, input_values: mx.array, bandwidth: float, padding_mask: mx.array
) -> Tuple[mx.array, Optional[mx.array]]:
"""
Encodes the given input using the underlying VQVAE.
"""
length = input_values.shape[1]
duration = length / self.config.sampling_rate
if (
self.config.chunk_length_s is not None
and duration > 1e-5 + self.config.chunk_length_s
):
raise RuntimeError(
f"Duration of frame ({duration}) is longer than chunk {self.config.chunk_length_s}"
)
scale = None
if self.config.normalize:
# if the padding is non zero
input_values = input_values * padding_mask[..., None]
mono = mx.sum(input_values, axis=2, keepdims=True) / input_values.shape[2]
scale = mono.square().mean(axis=1, keepdims=True).sqrt() + 1e-8
input_values = input_values / scale
embeddings = self.encoder(input_values)
codes = self.quantizer.encode(embeddings, bandwidth)
return codes, scale
def encode(
self,
input_values: mx.array,
padding_mask: mx.array = None,
bandwidth: Optional[float] = None,
) -> Tuple[mx.array, Optional[mx.array]]:
"""
Encodes the input audio waveform into discrete codes.
Args:
input_values (mx.array): The input audio waveform with shape
``(batch_size, channels, sequence_length)``.
padding_mask (mx.array): Padding mask used to pad the ``input_values``.
bandwidth (float, optional): The target bandwidth. Must be one of
``config.target_bandwidths``. If ``None``, uses the smallest
possible bandwidth. bandwidth is represented as a thousandth of
what it is, e.g. 6kbps bandwidth is represented as bandwidth == 6.0
Returns:
A list of frames containing the discrete encoded codes for the
input audio waveform, along with rescaling factors for each chunk
when ``config.normalize==True``. Each frame is a tuple ``(codebook,
scale)``, with ``codebook`` of shape ``(batch_size, num_codebooks,
frames)``.
"""
if bandwidth is None:
bandwidth = self.config.target_bandwidths[0]
if bandwidth not in self.config.target_bandwidths:
raise ValueError(
f"This model doesn't support the bandwidth {bandwidth}. "
f"Select one of {self.config.target_bandwidths}."
)
_, input_length, channels = input_values.shape
if channels < 1 or channels > 2:
raise ValueError(
f"Number of audio channels must be 1 or 2, but got {channels}"
)
chunk_length = self.chunk_length
if chunk_length is None:
chunk_length = input_length
stride = input_length
else:
stride = self.chunk_stride
if padding_mask is None:
padding_mask = mx.ones(input_values.shape[:2], dtype=mx.bool_)
encoded_frames = []
scales = []
step = chunk_length - stride
if (input_length % stride) != step:
raise ValueError(
"The input length is not properly padded for batched chunked "
"encoding. Make sure to pad the input correctly."
)
for offset in range(0, input_length - step, stride):
mask = padding_mask[:, offset : offset + chunk_length].astype(mx.bool_)
frame = input_values[:, offset : offset + chunk_length]
encoded_frame, scale = self._encode_frame(frame, bandwidth, mask)
encoded_frames.append(encoded_frame)
scales.append(scale)
encoded_frames = mx.stack(encoded_frames)
return (encoded_frames, scales)
@staticmethod
def _linear_overlap_add(frames: List[mx.array], stride: int):
if len(frames) == 0:
raise ValueError("`frames` cannot be an empty list.")
dtype = frames[0].dtype
N, frame_length, C = frames[0].shape
total_size = stride * (len(frames) - 1) + frames[-1].shape[1]
time_vec = mx.linspace(0, 1, frame_length + 2, dtype=dtype)[1:-1]
weight = 0.5 - (time_vec - 0.5).abs()
weight = weight[:, None]
sum_weight = mx.zeros((total_size, 1), dtype=dtype)
out = mx.zeros((N, total_size, C), dtype=dtype)
offset = 0
for frame in frames:
frame_length = frame.shape[1]
out[:, offset : offset + frame_length] += weight[:frame_length] * frame
sum_weight[offset : offset + frame_length] += weight[:frame_length]
offset += stride
return out / sum_weight
def _decode_frame(
self, codes: mx.array, scale: Optional[mx.array] = None
) -> mx.array:
embeddings = self.quantizer.decode(codes)
outputs = self.decoder(embeddings)
if scale is not None:
outputs = outputs * scale
return outputs
@property
def channels(self):
return self.config.audio_channels
@property
def sampling_rate(self):
return self.config.sampling_rate
@property
def chunk_length(self):
if self.config.chunk_length_s is None:
return None
else:
return int(self.config.chunk_length_s * self.config.sampling_rate)
@property
def chunk_stride(self):
if self.config.chunk_length_s is None or self.config.overlap is None:
return None
else:
return max(1, int((1.0 - self.config.overlap) * self.chunk_length))
def decode(
self,
audio_codes: mx.array,
audio_scales: Union[mx.array, List[mx.array]],
padding_mask: Optional[mx.array] = None,
) -> Tuple[mx.array, mx.array]:
"""
Decodes the given frames into an output audio waveform.
Note that the output might be a bit bigger than the input. In that
case, any extra steps at the end should be trimmed.
Args:
audio_codes (mx.array): Discret code embeddings of shape
``(batch_size, nb_chunks, chunk_length)``.
audio_scales (mx.array): Scaling factor for each input.
padding_mask (mx.array): Padding mask.
"""
chunk_length = self.chunk_length
if chunk_length is None:
if audio_codes.shape[1] != 1:
raise ValueError(f"Expected one frame, got {len(audio_codes)}")
audio_values = self._decode_frame(audio_codes[:, 0], audio_scales[0])
else:
decoded_frames = []
for frame, scale in zip(audio_codes, audio_scales):
frames = self._decode_frame(frame, scale)
decoded_frames.append(frames)
audio_values = self._linear_overlap_add(
decoded_frames, self.chunk_stride or 1
)
# truncate based on padding mask
if padding_mask is not None and padding_mask.shape[1] < audio_values.shape[1]:
audio_values = audio_values[:, : padding_mask.shape[1]]
return audio_values
@classmethod
def from_pretrained(cls, path_or_repo: str):
from huggingface_hub import snapshot_download
path = Path(path_or_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_repo,
allow_patterns=["*.json", "*.safetensors", "*.model"],
)
)
with open(path / "config.json", "r") as f:
config = SimpleNamespace(**json.load(f))
model = EncodecModel(config)
model.load_weights(str(path / "model.safetensors"))
processor = functools.partial(
preprocess_audio,
sampling_rate=config.sampling_rate,
chunk_length=model.chunk_length,
chunk_stride=model.chunk_stride,
)
mx.eval(model)
return model, processor
def preprocess_audio(
raw_audio: Union[mx.array, List[mx.array]],
sampling_rate: int = 24000,
chunk_length: Optional[int] = None,
chunk_stride: Optional[int] = None,
):
r"""
Prepare inputs for the EnCodec model.
Args:
raw_audio (mx.array or List[mx.array]): The sequence or batch of
sequences to be processed.
sampling_rate (int): The sampling rate at which the audio waveform
should be digitalized.
chunk_length (int, optional): The model's chunk length.
chunk_stride (int, optional): The model's chunk stride.
"""
if not isinstance(raw_audio, list):
raw_audio = [raw_audio]
raw_audio = [x[..., None] if x.ndim == 1 else x for x in raw_audio]
max_length = max(array.shape[0] for array in raw_audio)
if chunk_length is not None:
max_length += chunk_length - (max_length % chunk_stride)
inputs = []
masks = []
for x in raw_audio:
length = x.shape[0]
mask = mx.ones((length,), dtype=mx.bool_)
difference = max_length - length
if difference > 0:
mask = mx.pad(mask, (0, difference))
x = mx.pad(x, ((0, difference), (0, 0)))
inputs.append(x)
masks.append(mask)
return mx.stack(inputs), mx.stack(masks)