-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
82 lines (65 loc) · 2.84 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from typing import Union, List, Dict
import torch
import torchvision
from torch.utils.data import Dataset
from PIL import Image
_default_inverse_transform = torchvision.transforms.Compose([torchvision.transforms.Normalize((-0.3252/0.0265, -0.3283/0.0241, -0.3407/0.0252), (1/0.0265, 1/0.0241, 1/0.0252)),
torchvision.transforms.ToPILImage()])
class MemoryDataset(Dataset):
def __init__(self,
inputs: list,
targets: list,
transform: callable=None,
target_transform: list=None):
"""[Memory Dataset Class]
Args:
inputs (list): [inputs]
targets (list): [targets]
transform (callable, optional): [memory augmentations for inputs]. Defaults to None.
target_transform (list, optional): [memory augmentations for targets]. Defaults to None.
"""
if isinstance(inputs[0], torch.Tensor):
inputs_ = [_default_inverse_transform(img) for img in inputs]
inputs = inputs_
self._inputs = inputs
self._targets = targets
self.transform = transform
self.target_transform = target_transform
@property
def inputs(self):
return self._inputs
@property
def targets(self):
return self._targets
def append(self,
inputs: Union[torch.Tensor, List[torch.Tensor]],
targets: Dict[str, torch.Tensor]):
"""[append function for add new data to memory]
Args:
inputs (Union[torch.Tensor, List[torch.Tensor]]): [input in list tensor]
targets (Dict[str, torch.Tensor]): [target in dictionary tensor]
"""
if isinstance(inputs, torch.Tensor) or isinstance(targets, dict):
len_inputs = inputs.shape[0]
inputs = [x for x in inputs]
targets = [dict(label=targets['label'][i],
logit=targets['logit'][i],
feature=targets['feature'][i]) for i in range(len_inputs)]
# invers transform
if isinstance(inputs[0], torch.Tensor):
inputs_ = [_default_inverse_transform(img) for img in inputs]
inputs = inputs_
self._inputs += inputs
self._targets += targets
def get_labels(self):
return [int(target['label']) for target in self.targets]
def __len__(self):
return len(self.targets)
def __getitem__(self, index):
inputs = self._inputs[index]
targets = self._targets[index]
if self.transform is not None:
inputs = self.transform(inputs)
if self.target_transform is not None:
targets = self.target_transform(targets)
return inputs, targets