-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction.py
executable file
·374 lines (306 loc) · 14.3 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import cv2
import subprocess
import numpy as np
import boto3
from botocore import UNSIGNED
from botocore.config import Config
import time
global s3
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
def track_job(job, quantity, string, update_interval=1):
while job._number_left > 0:
print('\r ' + string + ' {:.2f}%'.format((quantity - (job._number_left * job._chunksize)) / quantity * 100), end="")
time.sleep(update_interval)
print('\r ' + string + ' {:.2f}%'.format((quantity - (job._number_left * job._chunksize)) / quantity * 100), end="")
print()
def download(id, directory):
modes = ["train", "validation", "test"]
# Incremento il counter
im = id
for iter_mode in modes:
current_bbox = grep(im, iter_mode)
if len(current_bbox) != 0:
curr_mode = iter_mode
break
# Scarico l'immagine richiesta
s3.download_file('open-images-dataset', curr_mode + '/' + im + '.jpg', directory + '/' + im + ".jpg")
def processing(id, dict_list, classes, subclasses, directory_annotation, directory_image, directory_review, Final_Size, Filtri):
modes = ["train", "validation", "test"]
for iter_mode in modes:
current_bbox = grep(id, iter_mode)
if len(current_bbox) != 0:
runMode = iter_mode
break
# Faccio la grep (trovo le righe contenenti ...) con il nome della current_foto
current_bbox = grep(id, runMode)
# Creo una variabile vuota per memorizzare le bbox
current_bbox2 = []
for i in range(len(current_bbox)):
# Apro la linea per sapere che classe è
lineParts = current_bbox[i].split(',')
# Itero sulle classi di interesse
for intrest in classes:
# Se è una classe di interesse la copio
if lineParts[2] == dict_list[intrest] and not (Filtri[3] and bool(int(lineParts[11]))):
current_bbox2.append(current_bbox[i])
break
# Se non è scattata nessuna classe allora controllo le sottoclassi
if Filtri[4]:
# Itero sulle sottoclassi
for x in subclasses:
# Se una classe di interesse ha sottoclassi
if x[0] in classes:
# Itero le sottoclassi di una classe di interesse
for intrest in x[1]:
# Se è presente
if lineParts[2] == dict_list[intrest] and not (Filtri[3] and bool(int(lineParts[11]))):
# Modifico la linea riscrivendo la classe di interesse al posto della sotto classe
modified_bbox = [lineParts[0], lineParts[1], dict_list[x[0]]]
for modified in lineParts[3:]:
modified_bbox.append(modified)
modified_bbox = ",".join(modified_bbox)
# La copio sulle righe che mi interessano
current_bbox2.append(modified_bbox)
break
current_bbox = current_bbox2
# Leggo l'immagine che ho appena scaricato
image = cv2.imread(directory_image + '/' + id + ".jpg")
size = image.shape[:2]
xml_generator(runMode, Final_Size, size, current_bbox, Filtri, directory_annotation, id, True)
image = image_resize(image, Final_Size, directory_image, id, True)
box_drawer(image, Final_Size, size, current_bbox, classes, Filtri, directory_review, id, True)
def regex_map(class_mode):
current_class = class_mode[0]
current_mode = class_mode[1]
current_id = []
current_bbox = grep(current_class, current_mode)
[current_id.append(line[:16]) for line in current_bbox]
return current_id
def intrest(class_mode):
current_class = class_mode[0]
current_mode = class_mode[1]
current_bbox = grep(current_class, current_mode)
return current_bbox
# Funzione che carica le subclasses dal file
def get_subclass():
subclasses = []
f = open("./names/subclasses.names", "r", encoding="UTF-8")
for x in f:
if x[0] != "#":
subclasses.append([x.strip().split("-")[0], x.strip().split("-")[1].split(";")])
f.close()
return subclasses
# Funzione che carica i filter dal file
def get_classfilter():
classfilter = []
f = open("./names/filter.names", "r", encoding="UTF-8")
for x in f:
if x[0] != "#":
classfilter.append(x.strip())
f.close()
return classfilter
# Funzione che carica le quantità e le classi da scaricare
def get_classqnt():
classes = np.asarray([])
load_qnt = np.asarray([])
f = open("./names/classes.names", "r", encoding="UTF-8")
for x in f:
if x[0] != "#":
classes = np.append(classes, x.strip().split("-")[0])
load_qnt = np.append(load_qnt, int(x.strip().split("-")[1]))
f.close()
return classes, load_qnt
# Funzione che carico il dizionario con tutte le associazioni class:id(Predefinito) se inverted=False id:class
def get_dict(inverted=True):
f = open("./csv_folder/class-descriptions-boxable.csv", "r", encoding="UTF-8")
dict_list = {}
for x in f:
if inverted:
dict_list[x.strip().split(",")[1]] = x.strip().split(",")[0]
else:
dict_list[x.strip().split(",")[0]] = x.strip().split(",")[1]
return dict_list
# Funzione che carica le subclasses dal file
def get_settings():
f = open("./names/settings.names", "r", encoding="UTF-8")
Dataset = ''
Filtri = []
Filtri2 = []
for x in f:
if x[0] != "#":
if len(x.strip().split(",")) == 1:
Dataset = x.strip()
if len(x.strip().split(",")) == 6:
[Filtri2.append(y) for y in x.strip().split(",")]
f.close()
for x in Filtri2:
if x == '1':
Filtri.append(True)
else:
Filtri.append(False)
return Dataset, Filtri
# Funzione ottimizzata per fare le regex
def grep(query, current_mode):
commandStr = "grep " + query + " ./csv_folder/" + current_mode + "-annotations-bbox.csv"
finding = subprocess.run(commandStr.split(), stdout=subprocess.PIPE).stdout.decode('utf-8')
finding = finding.splitlines()
return finding
def xml_generator(mode, dimension, original_size, current_bbox, Filtri, directory=None, id=None, save=False):
dict_list = get_dict(inverted=False)
# Formatto il file in modo carino
lines = []
lines.append("<annotation>")
lines.append(" " + "<folder>" + mode + "</folder>")
lines.append(" " + "<filename>" + current_bbox[0].split(",")[0] + ".jpg</filename>")
lines.append(" " + "<path /><source>")
lines.append(" " + "<database>Unknown</database>")
lines.append(" " + "</source>")
lines.append(" " + "<size>")
lines.append(" " + "<width>" + str(dimension) + "</width>")
lines.append(" " + "<height>" + str(dimension) + "</height>")
lines.append(" " + "<depth>3</depth>")
lines.append(" " + "</size>")
lines.append(" " + "<segmented>0</segmented>")
# Itero per le varie bbox
for line in current_bbox:
lineParts = line.split(',')
# Mi calcolo le nuove bbox
if original_size[0] < original_size[1]:
xRidimensionata = dimension
yRidimensionata = dimension / original_size[1] * original_size[0]
yOffset = int((dimension - yRidimensionata) / 2)
xmin = int(float(lineParts[4]) * dimension)
xmax = int(float(lineParts[5]) * dimension)
ymin = int(float(lineParts[6]) * yRidimensionata + yOffset)
ymax = int(float(lineParts[7]) * yRidimensionata + yOffset)
else:
xRidimensionata = dimension / original_size[0] * original_size[1]
yRidimensionata = dimension
xOffset = int((dimension - xRidimensionata) / 2)
xmin = int(float(lineParts[4]) * xRidimensionata + xOffset)
xmax = int(float(lineParts[5]) * xRidimensionata + xOffset)
ymin = int(float(lineParts[6]) * dimension)
ymax = int(float(lineParts[7]) * dimension)
percentage = (xmax - xmin) * (ymax - ymin) / (xRidimensionata * yRidimensionata)
if percentage < 0.01 and Filtri[5] or not Filtri[5]:
lines.append(" " + "<object>")
# Mi salvo la classe per il colore
current_class = dict_list[lineParts[2]]
lines.append(" " + "<name>" + current_class + "</name>")
lines.append(" " + "<pose>Unspecified</pose>")
lines.append(" " + "<truncated>" + lineParts[9] + "</truncated>")
lines.append(" " + "<difficult>0</difficult>")
lines.append(" " + "<bndbox>")
lines.append(" " + "<xmin>" + str(xmin) + "</xmin>")
lines.append(" " + "<ymin>" + str(ymin) + "</ymin>")
lines.append(" " + "<xmax>" + str(xmax) + "</xmax>")
lines.append(" " + "<ymax>" + str(ymax) + "</ymax>")
lines.append(" " + "</bndbox>")
lines.append(" " + "</object>")
lines.append("</annotation>")
if save:
# Salvo il file xml
g = open(directory + '/' + id + ".xml", "w", encoding="UTF-8")
for x in lines:
g.write(x)
g.write("\n")
g.close()
def image_resize(image, dimension, directory=None, id=None, save=False):
# Mi calcolo altezza e larghezza dalla foto
(h, w) = image.shape[:2]
# Vedo quale delle due dimensioni devo modificare
if h < w:
yRidimensionata = dimension / w * h
dim = (dimension, int(yRidimensionata))
xOffset = 0
yOffset = int((dimension - yRidimensionata) / 2)
else:
xRidimensionata = dimension / h * w
dim = (int(xRidimensionata), dimension)
xOffset = int((dimension - xRidimensionata) / 2)
yOffset = 0
# Faccio il primo resize alla dimensione più grande
resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
# La trasformo in un immagine quadrata
square = np.zeros((dimension, dimension, 3), np.uint8)
square[yOffset:yOffset + resized.shape[0], xOffset:xOffset + resized.shape[1]] = resized
if save:
cv2.imwrite(directory + '/' + id + ".jpg", square)
return square
def box_drawer(image, dimension, original_size, current_bbox, classes, Filtri, directory=None, id=None, save=False):
dict_list = get_dict(inverted=False)
info = []
for line in current_bbox:
lineParts = line.split(',')
# Mi salvo la classe per il colore
current_class = dict_list[lineParts[2]]
# Mi calcolo le nuove bbox
if original_size[0] < original_size[1]:
xRidimensionata = dimension
yRidimensionata = dimension / original_size[1] * original_size[0]
yOffset = int((dimension - yRidimensionata) / 2)
xmin = int(float(lineParts[4]) * dimension)
xmax = int(float(lineParts[5]) * dimension)
ymin = int(float(lineParts[6]) * yRidimensionata + yOffset)
ymax = int(float(lineParts[7]) * yRidimensionata + yOffset)
else:
xRidimensionata = dimension / original_size[0] * original_size[1]
yRidimensionata = dimension
xOffset = int((dimension - xRidimensionata) / 2)
xmin = int(float(lineParts[4]) * xRidimensionata + xOffset)
xmax = int(float(lineParts[5]) * xRidimensionata + xOffset)
ymin = int(float(lineParts[6]) * dimension)
ymax = int(float(lineParts[7]) * dimension)
color = (0, 0, 0)
color_name = "Nero"
# Scelgo il colore a seconda della classe
if current_class == classes[0]:
color = (255, 0, 0)
color_name = "Blu"
if len(classes) > 1:
if current_class == classes[1]:
color = (0, 255, 0)
color_name = "Verde"
if len(classes) > 2:
if current_class == classes[2]:
color = (0, 0, 255)
color_name = "Rosso"
if len(classes) > 3:
if current_class == classes[3]:
color = (255, 255, 0)
color_name = "Ciano"
if len(classes) > 4:
if current_class == classes[4]:
color = (0, 255, 255)
color_name = "Giallo"
if len(classes) > 5:
if current_class == classes[5]:
color = (255, 0, 255)
color_name = "Magenta"
if len(classes) > 6:
color = (255, 255, 255)
color_name = "Bianco"
# Aggiungo la bbox alla foto
percentage = (xmax - xmin) * (ymax - ymin) / (xRidimensionata * yRidimensionata)
if len(Filtri) == 6:
if percentage < 0.01 and not Filtri[5]:
image = cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
if int(lineParts[8]) or int(lineParts[9]):
color = (0, 0, 0)
image = cv2.putText(image, str("%.3f" % percentage) + "%", (xmin, ymin - 8), cv2.FONT_HERSHEY_SIMPLEX, 1.e-2 * (ymax - ymin), color, 2)
if percentage < 0.01 and Filtri[5]:
if int(lineParts[8]) or int(lineParts[9]):
color = (0, 0, 0)
image = cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
if percentage >= 0.01:
image = cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
else:
image = cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
if percentage < 0.01:
if int(lineParts[8]) or int(lineParts[9]):
color = (0, 0, 0)
image = cv2.putText(image, str("%.3f" % percentage) + "%", (xmin, ymin - 8), cv2.FONT_HERSHEY_SIMPLEX, 1.e-2 * (ymax - ymin), color, 2)
info.append([current_class, percentage, [xmin, xmax, ymin, ymax], color_name, lineParts[8:13]])
if save:
cv2.imwrite(directory + '/' + id + ".jpg", image)
return info