-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathderivative_JF_inverse_transpose.m
62 lines (50 loc) · 1.03 KB
/
derivative_JF_inverse_transpose.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Martin Rodriguez Cruz
% Data Visualizer for Particles
% Created 2/14/2017
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all
clc
syms F00 F01 F10 F11;
assume(F00,'real');
assume(F01,'real');
assume(F10,'real');
assume(F11,'real');
F = [ F00, F01; F10 F11 ]
J = det(F)
dJFT = cell(2,2);
for i = 1:2
for j = 1:2
disp(i)
disp(j)
dJFT{i,j} = diff(J*inv(F)',F(i,j));
disp(dJFT{i,j});
end
end
% syms F00 F01 F02 F10 F11 F12 F20 F21 F22;
% assume(F00,'real');
% assume(F01,'real');
% assume(F02,'real');
% assume(F10,'real');
% assume(F11,'real');
% assume(F12,'real');
% assume(F20,'real');
% assume(F21,'real');
% assume(F22,'real');
%
% F = [F00 F01 F02; F10 F11 F12; F20 F21 F22];
% J = det(F);
%
% dJFT = cell(3,3);
% for i = 1:3
% for j = 1:3
%
% disp(i)
% disp(j)
%
% dJFT{i,j} = diff(J*inv(F)',F(i,j));
% disp(dJFT{i,j});
%
% end
% end