-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_multitask.py
764 lines (648 loc) · 34.5 KB
/
run_multitask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import argparse
from copy import deepcopy
from typing import List, Optional
import os
import itertools
import math
import random
import time
import json
import pickle
from collections import defaultdict
import warnings
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from PIL import Image
import os.path as osp
import numpy as np
import higher
import numpy as np
import torch
import torch.autograd as A
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as O
import torch.distributions as D
import cv2
from torch.distributions import Normal
from random import choices
class FreezeParameters:
def __init__(self, parameters):
self.parameters = parameters
self.param_states = [p.requires_grad for p in self.parameters]
def __enter__(self):
for param in self.parameters:
param.requires_grad = False
def __exit__(self, exc_type, exc_val, exc_tb):
for i, param in enumerate(self.parameters):
param.requires_grad = self.param_states[i]
class WLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias_size = None, paaa=None):
super().__init__()
self.pa = paaa
if bias_size is None:
bias_size = out_features
dim = 100
self.z = nn.Parameter(torch.empty(dim).normal_(0, 1. / out_features))
self.fc = nn.Linear(dim, in_features * out_features + out_features)
self.seq = self.fc
self.w_idx = in_features * out_features
self.weight = self.fc.weight
self._linear = self.fc
self.out_f = out_features
def adaptation_parameters(self):
return self.parameters()#[self.z]
def forward(self, x: torch.tensor):
#theta = self.fc(self.z + torch.empty_like(self.z).normal_(0, 1. / self.out_f))
theta = self.fc(self.z)
w = theta[:self.w_idx].view(x.shape[-1], -1)
b = theta[self.w_idx:]
return x @ w + b
class Linear(nn.Linear):
def adaptation_parameters(self):
return list(self.parameters())
class MLP(nn.Module):
def __init__(self, layer_widths, final_activation = lambda x: x, extra_head_layers = None, w_linear: bool = False, scale=1.0):
super().__init__()
if len(layer_widths) < 2:
raise ValueError('Layer widths needs at least an in-dimension and out-dimension')
self._final_activation = final_activation
self.seq = nn.Sequential()
self._head = extra_head_layers is not None
self.scale = scale
if not w_linear:
linear = Linear
else:
linear = WLinear
self.aparams = []
for idx in range(len(layer_widths) - 1):
w = linear(layer_widths[idx], layer_widths[idx + 1])
self.aparams.extend(w.adaptation_parameters())
self.seq.add_module(f'fc_{idx}', w)
if idx < len(layer_widths) - 2:
self.seq.add_module(f'relu_{idx}', nn.ReLU())
if extra_head_layers is not None:
self.pre_seq = self.seq[:-2]
self.post_seq = self.seq[-2:]
self.head_seq = nn.Sequential()
extra_head_layers = [layer_widths[-2] + layer_widths[-1]] + extra_head_layers
for idx, (infc, outfc) in enumerate(zip(extra_head_layers[:-1], extra_head_layers[1:])):
self.head_seq.add_module(f'relu_{idx}', nn.ReLU())
w = linear(extra_head_layers[idx], extra_head_layers[idx + 1])
self.aparams.extend(w.adaptation_parameters())
self.head_seq.add_module(f'fc_{idx}', w)
def bias_parameters(self):
return [self.seq[0].bias]
def adaptation_parameters(self):
return self.parameters()
#return self.aparams
def forward(self, x: torch.tensor, acts: Optional[torch.tensor] = None):
if self._head and acts is not None:
h = self.pre_seq(x)
head_input = torch.cat((h,acts), -1)
return self._final_activation(self.post_seq(h))*self.scale, self.head_seq(head_input)
else:
return self._final_activation(self.seq(x))*self.scale
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class StochasticPolicy(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None):
super(StochasticPolicy, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.mean = nn.Linear(hidden_dim, num_actions)
self.log_std = torch.nn.Parameter(
torch.as_tensor([np.log(0.1)] * num_actions))
self.min_log_std = np.log(1e-6)
self.apply(weights_init_)
self.register_parameter(name='log_std', param=self.log_std)
# action rescaling
if action_space is None:
self.action_scale = 1.
self.action_bias = 0.
else:
self.action_scale = torch.FloatTensor(
(action_space.high - action_space.low) / 2.)
self.action_bias = torch.FloatTensor(
(action_space.high + action_space.low) / 2.)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
mean = torch.tanh(self.mean(x)) * self.action_scale + self.action_bias
#print(self.log_std)
log_std = torch.clamp(self.log_std, min=self.min_log_std)
log_std = log_std.unsqueeze(0).repeat([len(mean), 1])
std = torch.exp(log_std)
return Normal(mean, std)
def adaptation_parameters(self):
return self.parameters()
def sample(self, state):
dist = self.forward(state)
action = dist.rsample()
return action, dist.log_prob(action).sum(-1), dist.mean
def to(self, device):
self.action_scale = self.action_scale.to(device)
self.action_bias = self.action_bias.to(device)
return super(StochasticPolicy, self).to(device)
class MAMLRAWR(object):
def __init__(self, obs_space, ac_space, hidden_size, logdir, action_space, args, tmp_env):
self.env_name = args.env_name
self.device = torch.device("cuda" if args.cuda else "cpu")
self.logdir = logdir
self._args = args
self.tmp_env = tmp_env
self.gamma_safe = args.gamma_safe
self.obs_space = obs_space
self.ac_space = ac_space
self.pos_fraction = args.pos_fraction if args.pos_fraction >=0 else None
self.batch_size = 256
self.inner_batch_size = 256
self._observation_dim = obs_space.shape[0]
self._action_dim = ac_space.shape[0]
self.policy_head = [32, 1]
self.net_width = 100#256#100
self.net_depth = 3#2#3
self.outer_value_lr = 0.00001
self.outer_policy_lr = 0.0001
self.lrlr = 0.001
self.inner_policy_lr = 0.001 #0.001#0.0003#0.001
self.inner_value_lr = 0.001#0.001#0.0003#0.001
self.task_batch_size = 5
self.use_og_policy = False
self.advantage_head_coef = 0.01
self._adaptation_temperature = 1.0
self._gradient_steps_per_iteration = 1
self._advantage_clamp = np.log(20.0)
self._action_sigma = 0.01
self._grad_clip = 40.0
self._env_seeds = np.random.randint(1e10, size=(int(1e7),))
self._rollout_counter = 0
self._maml_steps = 1
self.updates = 0
self.value_target = None
# Value Function doesn't work anymore, Q_value should be true (DDPG Loss)
self.q_value = True
import os
try:
os.makedirs(logdir + "/1")
os.makedirs(logdir + "/5")
os.makedirs(logdir + "/10")
os.makedirs(logdir + "/20")
os.makedirs(logdir + "/right")
os.makedirs(logdir + "/left")
os.makedirs(logdir + "/up")
os.makedirs(logdir + "/down")
except OSError as e:
if e.errno != errno.EEXIST:
raise
if self.use_og_policy:
self._adaptation_policy = StochasticPolicy(self._observation_dim, self._action_dim, 256, ac_space).to(self.device)
else:
self._adaptation_policy = MLP([self._observation_dim] +
[self.net_width] * self.net_depth +
[self._action_dim],
final_activation=torch.tanh,
w_linear=False,
scale=ac_space.high[0]).to(self.device)
if self.q_value:
self._value_function = MLP([self._observation_dim + self._action_dim] +
[self.net_width] * self.net_depth +
[1],
final_activation=torch.sigmoid,
w_linear=True).to(self.device)
else:
self._value_function = MLP([self._observation_dim] +
[self.net_width] * self.net_depth +
[1],
final_activation=torch.sigmoid,
w_linear=True).to(self.device)
# For Meta Update
self._adaptation_policy_optimizer = O.Adam(self._adaptation_policy.parameters(), lr=self.outer_policy_lr)
self._value_function_optimizer = O.Adam(self._value_function.parameters(), lr=self.outer_value_lr)
self.torchify = lambda x: torch.FloatTensor(x).to(self.device)
self._policy_lrs = None
self._value_lrs = None
self._adv_coef = None
# Buffer probably declared in main.py
self._inner_buffers = None
self._outer_buffers = None
self._policy_lrs = [torch.nn.Parameter(torch.tensor(float(np.log(self.inner_policy_lr))).to(self.device))
for p in self._adaptation_policy.adaptation_parameters()]
self._value_lrs = [torch.nn.Parameter(torch.tensor(float(np.log(self.inner_policy_lr))).to(self.device))
for p in self._value_function.adaptation_parameters()]
self._adv_coef = torch.nn.Parameter(torch.tensor(float(np.log(self.advantage_head_coef))).to(self.device))
self._policy_lr_optimizer = O.Adam(self._policy_lrs, lr=self.lrlr)
self._value_lr_optimizer = O.Adam(self._value_lrs, lr=self.lrlr)
self._adv_coef_optimizer = O.Adam([self._adv_coef], lr=self.lrlr)
self.online_adapt_policy_opt = None
self.online_adapt_value_opt = None
def select_action(self, state, eval=False, policy=None):
if policy is None:
policy = self._adaptation_policy
state = torch.FloatTensor(state).to(self.device).unsqueeze(0)
if self.use_og_policy:
action, log_prob, action_mean = policy.sample(state)
if eval:
return action_mean.detach().cpu().numpy()[0]
else:
return action.detach().cpu().numpy()[0]
mu = policy(state)
if eval is True:
action = mu
else:
action = mu + self._action_sigma * torch.empty_like(mu).normal_()
return action.detach().cpu().numpy()[0]
def get_value(self, states, actions):
if self.q_value:
return self._value_function(torch.cat([states, actions], 1))
return self._value_function(states)
def __call__(self, states, actions):
if self.q_value:
value = self._value_function(torch.cat([states, actions], 1))
else:
value = self._value_function(states)
return value, value
def policy_output(self, policy, state_batch):
if self.use_og_policy:
action, _, _ = policy.sample(state_batch)
return action
mu = policy(state_batch)
actions = mu + self._action_sigma * torch.empty_like(mu).normal_()
return actions
def value_function_loss_on_batch(self, value_function, action_function, task_policy, state_batch, next_state_batch, action_batch, mc_reward_batch, reward_batch, mask_batch, inner: bool = False, target = None):
if self.q_value:
with torch.no_grad():
actions_next, _, _ = task_policy.sample(next_state_batch)
if target is None:
qvalue_next = value_function(torch.cat([next_state_batch, actions_next], 1))
else:
qvalue_next = target(torch.cat([next_state_batch, actions_next], 1))
targets = reward_batch + mask_batch * self.gamma_safe * qvalue_next
qvalue_estimates = value_function(torch.cat([state_batch, action_batch], 1))
losses = torch.nn.functional.mse_loss(qvalue_estimates,targets)
return losses, None, None, None
else:
value_estimates = value_function(state_batch)
with torch.no_grad():
mc_value_estimates = mc_reward_batch
targets = mc_value_estimates
if inner:
pass
factor = 1
losses = torch.nn.functional.mse_loss(value_estimates,targets)
return losses, value_estimates.mean(), mc_value_estimates.mean(), mc_value_estimates.std()
def adaptation_policy_loss_on_batch(self, policy, value_function, state_batch, action_batch, mc_reward_batch, inner: bool = False):
if self.q_value:
actions = self.policy_output(policy, state_batch)
q_value_estimate = value_function(torch.cat([state_batch, actions], 1))
losses = q_value_estimate.mean()
return losses, None, None, None
else:
with torch.no_grad():
value_estimates = value_function(state_batch)
action_value_estimates = mc_reward_batch
advantages = (action_value_estimates - value_estimates).squeeze(-1)
normalized_advantages = (1 / self._adaptation_temperature) * (advantages - advantages.mean()) / advantages.std()
normalized_advantages = -normalized_advantages
weights = normalized_advantages.clamp(max=self._advantage_clamp).exp()
action_mu, advantage_prediction = policy(state_batch, action_batch)
action_sigma = torch.empty_like(action_mu).fill_(self._action_sigma)
action_distribution = D.Normal(action_mu, action_sigma)
action_log_probs = action_distribution.log_prob(action_batch).sum(-1)
losses = -(action_log_probs * weights)
adv_prediction_loss = None
if inner:
if self.q_value:
pass
else:
adv_prediction_loss = F.softplus(self._adv_coef) * (advantage_prediction.squeeze() - advantages) ** 2
losses = losses + adv_prediction_loss
adv_prediction_loss = adv_prediction_loss.mean()
return losses.mean(), advantages.mean(), weights, adv_prediction_loss
def update_model(self, model: nn.Module, optimizer: torch.optim.Optimizer, clip: float = None, extra_grad: list = None):
if clip is not None:
grad = torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
else:
grad = None
optimizer.step()
optimizer.zero_grad()
return grad
def update_params(self, params: list, optimizer: torch.optim.Optimizer, clip: float = None, extra_grad: list = None):
optimizer.step()
optimizer.zero_grad()
def soft_update(self, source, target):
for param_source, param_target in zip(source.named_parameters(), target.named_parameters()):
assert param_source[0] == param_target[0]
param_target[1].data = (1-self._args.tau_safe) * param_target[1].data + self._args.tau_safe * param_source[1].data
def meta_update_parameters(self, inner_buffers, outer_buffers, writer=None, ep=None, memory=None, policy=None, critic=None, lr=None, batch_size=None, training_iterations=None, plot=None):
meta_value_grads = []
meta_policy_grads = []
train_rewards = []
rollouts = []
successes = []
train_step_index = self.updates
self.num_tasks = len(inner_buffers)
tasks = choices(range(self.num_tasks), k=self.task_batch_size)#random.sample(range(self.num_tasks), self.task_batch_size)
for i, (train_task_idx, inner_buffer, outer_buffer) in enumerate(zip(range(self.num_tasks), inner_buffers, outer_buffers)):
# Only train on the randomly selected tasks for this iteration
if train_task_idx not in tasks:
continue
# Data for Inner Adaptation
self.maml_steps = self._maml_steps
state_batch, action_batch, constraint_batch, next_state_batch, mask_batch, mc_reward_batch = inner_buffer.sample(
batch_size=self.inner_batch_size * self.maml_steps,
pos_fraction=self.pos_fraction)
state_batch = torch.FloatTensor(state_batch).to(self.device)
next_state_batch = torch.FloatTensor(next_state_batch).to(self.device)
action_batch = torch.FloatTensor(action_batch).to(self.device)
mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1)
constraint_batch = torch.FloatTensor(constraint_batch).to(
self.device).unsqueeze(1)
mc_reward_batch = torch.FloatTensor(mc_reward_batch).to(
self.device).unsqueeze(1)
state_batch = state_batch.view(self.maml_steps, state_batch.shape[0] // self.maml_steps, *state_batch.shape[1:])
next_state_batch = next_state_batch.view(self.maml_steps, next_state_batch.shape[0] // self.maml_steps, *next_state_batch.shape[1:])
action_batch = action_batch.view(self.maml_steps, action_batch.shape[0] // self.maml_steps, *action_batch.shape[1:])
mask_batch = mask_batch.view(self.maml_steps, mask_batch.shape[0] // self.maml_steps, *mask_batch.shape[1:])
constraint_batch = constraint_batch.view(self.maml_steps, constraint_batch.shape[0] // self.maml_steps, *constraint_batch.shape[1:])
mc_reward_batch = mc_reward_batch.view(self.maml_steps, mc_reward_batch.shape[0] // self.maml_steps, *mc_reward_batch.shape[1:])
# Data for Outer Adaptation
meta_state_batch, meta_action_batch, meta_constraint_batch, meta_next_state_batch, meta_mask_batch, meta_mc_reward_batch = outer_buffer.sample(
batch_size=self.batch_size,
pos_fraction=self.pos_fraction)
meta_state_batch = torch.FloatTensor(meta_state_batch).to(self.device)
meta_next_state_batch = torch.FloatTensor(meta_next_state_batch).to(self.device)
meta_action_batch = torch.FloatTensor(meta_action_batch).to(self.device)
meta_mask_batch = torch.FloatTensor(meta_mask_batch).to(self.device).unsqueeze(1)
meta_constraint_batch = torch.FloatTensor(meta_constraint_batch).to(
self.device).unsqueeze(1)
meta_mc_reward_batch = torch.FloatTensor(meta_mc_reward_batch).to(
self.device).unsqueeze(1)
inner_value_losses = []
meta_value_losses = []
inner_policy_losses = []
adv_policy_losses = []
meta_policy_losses = []
value_lr_grads = []
policy_lr_grads = []
#inner_mc_means, inner_mc_stds = [], []
#outer_mc_means, outer_mc_stds = [], []
#inner_values, outer_values = [], []
#inner_weights, outer_weights = [], []
#inner_advantages, outer_advantages = [], []
##################################################################################################
# Adapt value function and collect meta-gradients
##################################################################################################
vf = self._value_function
vf.train()
vf_target = deepcopy(vf)
opt = O.SGD([{'params': p, 'lr': None} for p in vf.adaptation_parameters()])
with higher.innerloop_ctx(vf, opt, override={'lr': [F.softplus(l) for l in self._value_lrs]}, copy_initial_weights=False) as (f_value_function, diff_value_opt):
for step in range(self._maml_steps):
state = state_batch[step]
next_state = next_state_batch[step]
action = action_batch[step]
mask = mask_batch[step]
constraint = constraint_batch[step]
mc_reward = mc_reward_batch[step]
loss, value_inner, mc_inner, mc_std_inner = self.value_function_loss_on_batch(f_value_function, self._adaptation_policy, policy, state, next_state, action, mc_reward, constraint, mask, inner=True, target = vf_target)
#inner_values.append(value_inner.item())
#inner_mc_means.append(mc_inner.item())
#inner_mc_stds.append(mc_std_inner.item())
diff_value_opt.step(loss)
inner_value_losses.append(loss.item())
self.soft_update(f_value_function, vf_target)
#Soft Update the Target Network
# Collect grads for the value function update in the outer loop [L14],
# which is not actually performed here
meta_value_function_loss, value, mc, mc_std = self.value_function_loss_on_batch(f_value_function, self._adaptation_policy, policy, meta_state_batch, meta_next_state_batch, meta_action_batch, meta_mc_reward_batch, meta_constraint_batch, meta_mask_batch, inner = False, target = vf_target)
total_vf_loss = meta_value_function_loss / self.num_tasks
total_vf_loss.backward()
#outer_values.append(value.item())
#outer_mc_means.append(mc.item())
#outer_mc_stds.append(mc_std.item())
'''
meta_value_losses.append(meta_value_function_loss.item())
##################################################################################################
# Adapt policy and collect meta-gradients
##################################################################################################
adapted_value_function = f_value_function
opt = O.SGD([{'params': p, 'lr': None} for p in self._adaptation_policy.adaptation_parameters()])
self._adaptation_policy.train()
with higher.innerloop_ctx(self._adaptation_policy, opt, override={'lr': [F.softplus(l) for l in self._policy_lrs]}, copy_initial_weights=False) as (f_adaptation_policy, diff_policy_opt):
with FreezeParameters(adapted_value_function.parameters()):
for step in range(self._maml_steps):
loss, adv, weights, adv_loss = self.adaptation_policy_loss_on_batch(f_adaptation_policy,
adapted_value_function, state_batch, action_batch, mc_reward_batch, inner=True)
diff_policy_opt.step(loss)
inner_policy_losses.append(loss.item())
#adv_policy_losses.append(adv_loss.item())
#inner_advantages.append(adv.item())
#inner_weights.append(weights.mean().item())
meta_policy_loss, outer_adv, outer_weights_, _ = self.adaptation_policy_loss_on_batch(f_adaptation_policy, adapted_value_function, meta_state_batch, meta_action_batch, meta_mc_reward_batch, inner=False)
(meta_policy_loss / self.num_tasks).backward()
#outer_weights.append(outer_weights_.mean().item())
#outer_advantages.append(outer_adv.item())
meta_policy_losses.append(meta_policy_loss.item())
##################################################################################################
'''
# Meta-update value function [L14]
grad = self.update_model(self._value_function, self._value_function_optimizer, clip=self._grad_clip)
# Meta-update adaptation policy [L15] (Not really metaupdated)
ap_opt = self._adaptation_policy_optimizer
ap_opt.zero_grad()
state_batch, action_batch, constraint_batch, next_state_batch, mask_batch, mc_reward_batch = memory.sample(
batch_size=min(batch_size, len(memory)),
pos_fraction=self.pos_fraction)
state_batch = torch.FloatTensor(state_batch).to(self.device)
next_state_batch = torch.FloatTensor(next_state_batch).to(self.device)
action_batch = torch.FloatTensor(action_batch).to(self.device)
mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1)
constraint_batch = torch.FloatTensor(constraint_batch).to(
self.device).unsqueeze(1)
mc_reward_batch = torch.FloatTensor(mc_reward_batch).to(
self.device).unsqueeze(1)
ap_loss, _, _, _ = self.adaptation_policy_loss_on_batch(self._adaptation_policy, self._value_function, state_batch, action_batch, mc_reward_batch, inner=True)
ap_opt.zero_grad()
ap_loss.backward()
ap_opt.step()
self._value_function_optimizer.zero_grad()
#grad = self.update_model(self._adaptation_policy, self._adaptation_policy_optimizer, clip=self._grad_clip)
if self.lrlr > 0:
self.update_params(self._value_lrs, self._value_lr_optimizer)
#self.update_params(self._policy_lrs, self._policy_lr_optimizer)
#self.update_params([self._adv_coef], self._adv_coef_optimizer)
self.updates+=1
if self.updates%100==0:
if self._args.env_name=='cartpole':
return
if self._args.env_name=='Ant-Disabled':
return
if self._args.env_name=='HalfCheetah-Disabled':
return
# For Maze
self.plot(policy, self.updates, [.1, 0], "right", folder_prefix="/right/")
self.plot(policy, self.updates, [-.1, 0], "left", folder_prefix="/left/")
self.plot(policy, self.updates, [0, .1], "down", folder_prefix="/down/")
self.plot(policy, self.updates, [0, -.1], "up", folder_prefix="/up/")
self.eval_adaptation(policy, memory)
def eval_adaptation(self, policy, memory):
vf = deepcopy(self._value_function)
ap = deepcopy(self._adaptation_policy)
opt = O.Adam(vf.parameters(), lr=self.inner_value_lr)
ap_opt = O.Adam(ap.parameters(), lr=self.inner_policy_lr)
vf_target = deepcopy(self._value_function)
log_steps = [1,5,10,20]
for step in range(20):
state_batch, action_batch, constraint_batch, next_state_batch, mask_batch, mc_reward_batch = memory.sample(
batch_size=min(self.batch_size, len(memory)),
pos_fraction=self.pos_fraction)
state_batch = torch.FloatTensor(state_batch).to(self.device)
next_state_batch = torch.FloatTensor(next_state_batch).to(self.device)
action_batch = torch.FloatTensor(action_batch).to(self.device)
mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1)
constraint_batch = torch.FloatTensor(constraint_batch).to(
self.device).unsqueeze(1)
mc_reward_batch = torch.FloatTensor(mc_reward_batch).to(
self.device).unsqueeze(1)
vf_loss, _, _, _ = self.value_function_loss_on_batch(vf, ap, policy, state_batch, next_state_batch, action_batch, mc_reward_batch, constraint_batch, mask_batch, inner=True, target = vf_target)
opt.zero_grad()
vf_loss.backward()
opt.step()
self.soft_update(vf, vf_target)
ap_loss, _, _, _ = self.adaptation_policy_loss_on_batch(ap, vf, state_batch, action_batch, mc_reward_batch, inner=True)
ap_opt.zero_grad()
ap_loss.backward()
ap_opt.step()
if step+1 in log_steps:
if self._args.env_name == 'cartpole':
return
if self._args.env_name == 'Ant-Disabled':
return
if self._args.env_name=='HalfCheetah-Disabled':
return
# For Maze
self.plot(policy, self.updates, [.1, 0], "right", folder_prefix="/" + str(step+1) + "/", critic=vf)
def update_parameters(self, ep=None, memory=None, policy=None, critic=None, lr=None, batch_size=None, training_iterations=None, plot=None):
if self.online_adapt_value_opt is None and self.online_adapt_policy_opt is None:
self.online_adapt_value_opt = O.Adam(self._value_function.parameters(), lr=self.inner_value_lr)
self.online_adapt_policy_opt = O.Adam(self._adaptation_policy.parameters(), lr=self.inner_policy_lr)
if self.value_target is None:
self.value_target = deepcopy(self._value_function)
# Data for Inner Adaptation
state_batch, action_batch, constraint_batch, next_state_batch, mask_batch, mc_reward_batch = memory.sample(
batch_size=min(batch_size, len(memory)),
pos_fraction=self.pos_fraction)
state_batch = torch.FloatTensor(state_batch).to(self.device)
next_state_batch = torch.FloatTensor(next_state_batch).to(self.device)
action_batch = torch.FloatTensor(action_batch).to(self.device)
mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1)
constraint_batch = torch.FloatTensor(constraint_batch).to(
self.device).unsqueeze(1)
mc_reward_batch = torch.FloatTensor(mc_reward_batch).to(
self.device).unsqueeze(1)
vf = self._value_function
vf.train()
vf_loss, _, _ , _ = self.value_function_loss_on_batch(vf, self._adaptation_policy, policy, state_batch, next_state_batch, action_batch, mc_reward_batch, constraint_batch, mask_batch, inner=True, target = self.value_target)
self.soft_update(self._value_function, self.value_target)
self.online_adapt_value_opt.zero_grad()
vf_loss.backward()
self.online_adapt_value_opt.step()
self._adaptation_policy.train()
actor_loss, _, _, _= self.adaptation_policy_loss_on_batch(self._adaptation_policy,
self._value_function, state_batch, action_batch, mc_reward_batch, inner=True)
# Meta-update value function [L14]
self.online_adapt_policy_opt.zero_grad()
actor_loss.backward()
self.online_adapt_policy_opt.step()
self.updates+=1
if self.updates%100==0:
if self._args.env_name == 'cartpole':
return
if self._args.env_name == 'Ant-Disabled':
return
if self._args.env_name=='HalfCheetah-Disabled':
return
# For Maze
if self.q_value:
self.plot(policy, self.updates, [.1, 0], "right", folder_prefix="/right/")
self.plot(policy, self.updates, [-.1, 0], "left", folder_prefix="/left/")
self.plot(policy, self.updates, [0, .1], "down", folder_prefix="/down/")
self.plot(policy, self.updates, [0, -.1], "up", folder_prefix="/up/")
else:
self.plot(policy, self.updates)
def plot(self, pi, ep, action=None, suffix="", folder_prefix = "", critic=None):
env = self.tmp_env
if self.env_name in ['maze', 'maze_1', 'maze_2', 'maze_3', 'maze_4', 'maze_5', 'maze_6']:
x_bounds = [-0.3, 0.3]
y_bounds = [-0.3, 0.3]
elif self.env_name == 'simplepointbot0':
x_bounds = [-80, 20]
y_bounds = [-10, 10]
elif self.env_name =='simplepointbot1':
x_bounds = [-75, 25]
y_bounds = [-20, 20]
states = []
x_pts = 100
y_pts = int(
x_pts * (x_bounds[1] - x_bounds[0]) / (y_bounds[1] - y_bounds[0]))
for x in np.linspace(x_bounds[0], x_bounds[1], y_pts):
for y in np.linspace(y_bounds[0], y_bounds[1], x_pts):
if self.env_name == 'image_maze':
env.reset(pos=(x, y))
obs = process_obs(env._get_obs(images=True))
states.append(obs)
else:
states.append([x, y])
if self._args.env_name=='maze':
states = np.array(states)
goal_state = self.tmp_env.get_goal()
batch_size = states.shape[0]
goal_states = np.tile(goal_state, (batch_size, 1))
states = np.concatenate([states, goal_states], axis=1)
states = self.torchify(states)
else:
states = self.torchify(np.array(states))
if critic is None:
critic = self._value_function
critic.eval()
if self.q_value:
actions = self.torchify(np.tile(action, (len(states), 1)))
max_qf = critic(torch.cat([states, actions], 1))
else:
max_qf = critic(states)
grid = max_qf.detach().cpu().numpy()
grid = grid.reshape(y_pts, x_pts)
if self.env_name == 'simplepointbot0':
plt.gca().add_patch(
Rectangle(
(0, 25),
500,
50,
linewidth=1,
edgecolor='r',
facecolor='none'))
elif self.env_name == 'simplepointbot1':
plt.gca().add_patch(
Rectangle(
(112.5, 31.25),
10*2.5,
15*2.5,
linewidth=1,
edgecolor='r',
facecolor='none'))
if self.env_name in ['maze', 'maze_1', 'maze_2', 'maze_3', 'maze_4', 'maze_5', 'maze_6']:
fig, ax = plt.subplots()
cmap = plt.get_cmap('jet', 10)
background = cv2.resize(env._get_obs(images=True), (x_pts, y_pts))
plt.imshow(background)
im = ax.imshow(grid.T, alpha=0.6, cmap=cmap, vmin=0.0, vmax=1.0)
cbar = fig.colorbar(im, ax=ax)
else:
plt.imshow(grid.T)
log_string = self.logdir + "/" + folder_prefix + "value_" + str(ep) + suffix
plt.savefig(
log_string,
bbox_inches='tight')