-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgen_dynamic_shelf_long_demos.py
232 lines (204 loc) · 6.94 KB
/
gen_dynamic_shelf_long_demos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
import datetime
import gym
import numpy as np
import itertools
import torch
from tensorboardX import SummaryWriter
import cv2
import os
import moviepy.editor as mpy
from env.shelf_dynamic_long_env import ShelfDynamicLongEnv
import pickle
import time
HYPERPARAMS = {
'T': 25, # length of each episode
'image_height': 48,
'image_width': 64,
}
def npy_to_gif(im_list, filename, fps=4):
clip = mpy.ImageSequenceClip(im_list, fps=fps)
clip.write_gif(filename + '.gif')
def process_obs(obs):
agent_img_height = HYPERPARAMS['image_height']
agent_img_width = HYPERPARAMS['image_width']
im = obs
im = cv2.resize(
im, (agent_img_width, agent_img_height), interpolation=cv2.INTER_AREA)
im = np.transpose(im, (2, 0, 1))
return im
parser = argparse.ArgumentParser(description='PyTorch Soft Actor-Critic Args')
parser.add_argument(
'--env-name',
default="ShelfEnv",
help='Mujoco Gym environment (default: ShelfEnv')
parser.add_argument(
'--start_steps',
type=int,
default=5000,
metavar=
'N', # TODO: think about what this is approperiate to be...maybe even lower, or make it higher
# so can explore sufficiently after the demos are over??
help='Steps sampling random actions (default: 10000)')
parser.add_argument(
'--num_demos',
type=int,
default=250,
metavar='N',
help='num demos (default: 250)')
parser.add_argument(
'--seed',
type=int,
default=123456,
metavar='N',
help='random seed (default: 123456)')
parser.add_argument(
'--cnn', action="store_true", help='visual observations (default: False)')
parser.add_argument(
'--cuda', action="store_true", help='run on CUDA (default: False)')
parser.add_argument(
'--demo_filter_constraints',
action="store_true",
help='make sure all demos satisfy constraints (default: False)')
parser.add_argument('--demo_quality', default='high')
parser.add_argument('--dense_reward', action="store_true")
parser.add_argument('--fixed_env', action="store_true")
parser.add_argument('--gt_state', action="store_true")
parser.add_argument('--early_termination', action="store_true")
parser.add_argument('--early_termination_success', action="store_true")
parser.add_argument(
'--use_constraint_penalty',
action="store_true",
help='use constraints penalty (default: False)')
parser.add_argument(
'--constraint_penalty',
type=int,
default=1,
metavar='N',
help='constraint penalty (default: 10)')
parser.add_argument('--constraint_demos', action="store_true")
parser.add_argument('--save_rollouts', action="store_true")
args = parser.parse_args()
# Environment
env = gym.make('ShelfDynamicLong-v0')
torch.manual_seed(args.seed)
np.random.seed(args.seed)
env.seed(args.seed)
print("ENV STUFF")
print("OBSERVATION SPACE", env.observation_space)
print("ACTION SPACE", env.action_space.low)
print("ACTION SPACE", env.action_space.high)
# Training Loop
total_numsteps = 0
updates = 0
demo_transitions = []
demo_rollouts = []
i_demos = 0
start = time.time()
while i_demos < args.num_demos:
state = env.reset()
demo_rollouts.append([])
if not args.gt_state:
state = process_obs(state)
episode_steps = 0
episode_reward = 0
episode_constraints = 0
done = False
t = 0
time_seed = np.random.random()
im_list = [env.render().squeeze()]
while not done:
if args.constraint_demos:
if time_seed < 0.5:
if t < 7:
action = env.expert_action(
2, noise_std=0.01, demo_quality='low')
else:
action = env.expert_action(
t, noise_std=0.2, demo_quality='low')
else:
if t < 16:
action = env.expert_action(t, noise_std=0.005)
else:
action = env.expert_action(t, noise_std=0.2)
else:
action = env.expert_action(t, noise_std=0.005)
next_state, reward, done, info = env.step(action) # Step
im_list.append(env.render().squeeze())
if episode_steps == env._max_episode_steps:
done = True
# if done and reward > 0:
# reward = 5
# info['reward'] = 5
constraint = info['constraint']
if args.use_constraint_penalty and constraint:
reward += args.constraint_penalty * (-int(constraint))
episode_steps += 1
total_numsteps += 1
episode_reward += reward
episode_constraints += constraint
mask = float(not done)
if not args.gt_state:
next_state = process_obs(next_state)
if args.constraint_demos:
# if constraint:
demo_transitions.append((state, action, constraint, next_state,
mask))
demo_rollouts[-1].append((state, action, constraint, next_state,
mask))
# else:
# if np.random.random() < 0.1:
# demo_transitions.append( (state, action, constraint, next_state, mask) )
# demo_rollouts[-1].append( (state, action, constraint, next_state, mask) )
else:
demo_transitions.append((state, action, reward, next_state, mask))
demo_rollouts[-1].append((state, action, constraint, next_state,
mask))
state = next_state
t += 1
# if i_demos % 100 == 0:
print("Demo #: ", i_demos)
print("TIME: ", time.time() - start)
print("DEMO EPISODE REWARD", episode_reward)
print("DEMO EPISODE CONSTRAINTS", episode_constraints)
print("DEMO EPISODE STEPS", episode_steps)
if not args.constraint_demos:
if episode_reward > -25 and episode_constraints == 0:
# npy_to_gif(im_list, "out_{}".format(i_demos))
i_demos += 1
else:
# Remove last rollout if it doesn't do the task...
demo_transitions = demo_transitions[:-t]
demo_rollouts.pop()
else:
i_demos += 1
if args.constraint_demos:
f_name = "constraint_demos"
if args.save_rollouts:
f_name += "_rollouts"
if not args.gt_state:
f_name += "_images"
f_name += ".pkl"
if not args.save_rollouts:
pickle.dump(
demo_transitions,
open(os.path.join("demos/shelf_dynamic_long", f_name), "wb"))
else:
pickle.dump(
demo_rollouts,
open(os.path.join("demos/shelf_dynamic_long", f_name), "wb"))
else:
f_name = "task_demos"
if args.save_rollouts:
f_name += "_rollouts"
if not args.gt_state:
f_name += "_images"
f_name += ".pkl"
if not args.save_rollouts:
pickle.dump(
demo_transitions,
open(os.path.join("demos/shelf_dynamic_long", f_name), "wb"))
else:
pickle.dump(
demo_rollouts,
open(os.path.join("demos/shelf_dynamic_long", f_name), "wb"))