This repository has been archived by the owner on Dec 9, 2022. It is now read-only.
generated from fastai/fastpages
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathindex.html
66 lines (60 loc) · 4.98 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
layout: default
search_exclude: true
---
<p>This site hosts notebooks corresponding to the book <a href="https://www.amazon.com/gp/product/1492032646">Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow, 2nd edition</a></p>
<p>These notebooks were sourced from <a href="https://github.com/ageron/handson-ml2">ageron/handson-ml2</a>, with express permission of the author.</p>
<p>This site was built with <a href="https://github.com/fastai/fastpages">fastpages</a>, An easy to use blogging platform, with enhanced support for Jupyter Notebooks.</p>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Machine-Learning-Notebooks">Machine Learning Notebooks<a class="anchor-link" href="#Machine-Learning-Notebooks"> </a></h1>
<p><a href="#Prerequisites">Prerequisites</a> (see below)</p>
<h2 id="Notebooks">Notebooks<a class="anchor-link" href="#Notebooks"> </a></h2><ol>
<li><a href="01_the_machine_learning_landscape">The Machine Learning landscape</a></li>
<li><a href="02_end_to_end_machine_learning_project">End-to-end Machine Learning project</a></li>
<li><a href="03_classification">Classification</a></li>
<li><a href="04_training_linear_models">Training Models</a></li>
<li><a href="05_support_vector_machines">Support Vector Machines</a></li>
<li><a href="06_decision_trees">Decision Trees</a></li>
<li><a href="07_ensemble_learning_and_random_forests">Ensemble Learning and Random Forests</a></li>
<li><a href="08_dimensionality_reduction">Dimensionality Reduction</a></li>
<li><a href="09_unsupervised_learning">Unsupervised Learning Techniques</a></li>
<li><a href="10_neural_nets_with_keras">Artificial Neural Nets with Keras</a></li>
<li><a href="11_training_deep_neural_networks">Training Deep Neural Networks</a></li>
<li><a href="12_custom_models_and_training_with_tensorflow">Custom Models and Training with TensorFlow</a></li>
<li><a href="13_loading_and_preprocessing_data">Loading and Preprocessing Data</a></li>
<li><a href="14_deep_computer_vision_with_cnns">Deep Computer Vision Using Convolutional Neural Networks</a></li>
<li><a href="15_processing_sequences_using_rnns_and_cnns">Processing Sequences Using RNNs and CNNs</a></li>
<li><a href="16_nlp_with_rnns_and_attention">Natural Language Processing with RNNs and Attention</a></li>
<li><a href="17_autoencoders_and_gans">Representation Learning Using Autoencoders</a></li>
<li><a href="18_reinforcement_learning">Reinforcement Learning</a></li>
<li><a href="19_training_and_deploying_at_scale">Training and Deploying TensorFlow Models at Scale</a></li>
</ol>
<h2 id="Scientific-Python-tutorials">Scientific Python tutorials<a class="anchor-link" href="#Scientific-Python-tutorials"> </a></h2><ul>
<li><a href="tools_numpy">NumPy</a></li>
<li><a href="tools_matplotlib">Matplotlib</a></li>
<li><a href="tools_pandas">Pandas</a></li>
</ul>
<h2 id="Math-Tutorials">Math Tutorials<a class="anchor-link" href="#Math-Tutorials"> </a></h2><ul>
<li><a href="math_linear_algebra">Linear Algebra</a></li>
</ul>
<h2 id="Misc.">Misc.<a class="anchor-link" href="#Misc."> </a></h2><ul>
<li><a href="book_equations">Equations</a> (list of equations in the book)</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Prerequisites">Prerequisites<a class="anchor-link" href="#Prerequisites"> </a></h2><h3 id="To-understand">To understand<a class="anchor-link" href="#To-understand"> </a></h3><ul>
<li><strong>Python</strong> – you don't need to be an expert python programmer, but you do need to know the basics. If you don't, the official <a href="https://docs.python.org/3/tutorial/">Python tutorial</a> is a good place to start.</li>
<li><strong>Scientific Python</strong> – We will be using a few popular python libraries, in particular NumPy, matplotlib and pandas. If you are not familiar with these libraries, you should probably start by going through the tutorials in the Tools section (especially NumPy).</li>
<li><strong>Math</strong> – We will also use some notions of Linear Algebra, Calculus, Statistics and Probability theory. You should be able to follow along if you learned these in the past as it won't be very advanced, but if you don't know about these topics or you need a refresher then go through the appropriate introduction in the Math section.</li>
</ul>
<h3 id="To-run-the-examples">To run the examples<a class="anchor-link" href="#To-run-the-examples"> </a></h3><ul>
<li><strong>Jupyter</strong> – These notebooks are based on Jupyter. You can run these notebooks in just one click using a hosted platform such as Binder, Deepnote or Colaboratory (no installation required), or you can just view them using Jupyter.org's viewer, or you can install everything on your machine, as you prefer. Check out the <a href="https://github.com/ageron/handson-ml2/">home page</a> for more details.</li>
</ul>
</div>
</div>
</div>
</div>