-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
624 lines (501 loc) · 23.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import numpy as np
import os
from time import time
import colossus.cosmology.cosmology as cosmo
from colossus.halo import concentration, mass_so
from colossus.lss.mass_function import massFunction
from scipy.interpolate import interp1d
cosmol=cosmo.setCosmology('planck15') #cosmology for colossus. By default hmf uses planck15
def fred(x,bpar=1,beta=0.68): # need to update this with new fit
return 1./(1+beta*1.e12/10**x)
#ToDo put size things into a class
def sizes_from_lambda(R):
## Bullock
lambda0 = -1.459
sigma = 0.268
fact = 10**(np.random.normal(lambda0,sigma,size=len(R)))
return R*fact
def Schechter_like(x,width):
###peebles spin
alpha =-4.126
beta=0.610
lambda0 = -2.919
first = (x/10**lambda0)**(-alpha)
second = -(x/10**lambda0)**(beta)
final = first*np.exp(second)
area = np.sum(final*width)
return final/area
def Schechter_cumul(x,width):
y = Schechter_like(x,width)
cumul = np.cumsum(y)
return cumul/np.max(cumul)
def extract_lambdas(R):
x=np.linspace(1.e-4,0.5,1000000)
width =x[1]-x[0]
cumul = Schechter_cumul(x,width)
ff = interp1d(cumul,x)
xx = np.random.uniform(0,1,size= len(R))
lambdas = ff(xx)
return lambdas
def sizes_from_lambda_skewed(R):
lambdas = extract_lambdas(R)
return np.log10(R*lambdas)
def get_Rh(halos, redshift,mdef='vir'):
halonew = np.array(10**halos)*cosmol.h #converts from Mvir to Mvir/h
rhalo = mass_so.M_to_R(halonew,redshift,mdef=mdef)/cosmol.h
return rhalo
def get_sizefunction(halos, redshift, V,A_K, sigma_K, stars, masslow,massup,model='K13',sigmaK_evo=False, mdef='vir', bins=np.arange(-2,3,0.05), Type='Re'):
rhalo = get_Rh(halos, redshift, mdef=mdef)
if model=='K13':
inp = rhalo*A_K
if sigmaK_evo:
sigma_K= 0.15+0.05*redshift
Re = Kravtsov(inp, A=A_K, scatt=sigma_K)
#print(Re)
if model=='MMW':
Re = sizes_from_lambda_skewed(rhalo)
mask = np.ma.masked_inside(stars, masslow, massup).mask
Re = Re[mask]
stars = stars[mask]
occupation_distr = halos[mask]
binwidth = bins[1]-bins[0]
if Type=='Cassata' or Type=='Re':
try:
hist = np.histogram(Re, bins=bins)[0]
return occupation_distr, Re,np.array([bins[1:]-0.5*binwidth, hist/V/(binwidth)])
except:
m = (masslow+massup)/2
print('Could not compute size function for mass='+str(m)+'and z='+str(redshift))
return 0,0,np.zeros(len(bins)-1)
elif Type=='Gargiulo':
Sigma = stars-2*Re-np.log10(2*np.pi) - 6 # -6 to convert from pc^-2 to kpc^-2
try:
hist = np.histogram(Sigma, bins=bins)[0] #Gargiulo definition of compacntess, Mstar/(2pi*R^2)>2000 msun/pc^2
return occupation_distr,Sigma,np.array([bins[1:]-0.5*binwidth, hist/V/(binwidth)])
except:
m = (masslow+massup)/2
print('Could not compute size function for mass='+str(m)+'and z='+str(redshift))
return 0,0,np.zeros(len(bins)-1)
elif Type=='vanDerWel':
gamma = Re-0.75*(stars-11)
try:
hist = np.histogram(gamma, bins=bins)[0]
return occupation_distr, gamma,np.array([bins[1:]-0.5*binwidth, hist/V/(binwidth)])
except:
m = (masslow+massup)/2
print('Could not compute size function for mass='+str(m)+'and z='+str(redshift))
return 0,0,np.zeros(len(bins)-1)
elif Type=='Barro':
Sigma = stars-1.5*Re
try:
hist = np.histogram(Sigma, bins=bins)[0] #Barro definition of compacntess, Mstar/(R^1.5)>10^10.3
return occupation_distr,Sigma,np.array([bins[1:]-0.5*binwidth, hist/V/(binwidth)])
except:
m = (masslow+massup)/2
print('Could not compute size function for mass='+str(m)+'and z='+str(redshift))
return 0,0,np.zeros(len(bins)-1)
def get_SigmaGargiulofunction(halos, redshift, V,A_K, sigma_K, stars, masslow,massup,model='K13',sigmaK_evo=False, mdef='vir', bins=np.arange(2,5,0.05)):
rhalo = get_Rh(halos, redshift, mdef=mdef)
if model=='K13':
inp = rhalo*A_K
if sigmaK_evo:
sigma_K= 0.15+0.05*redshift
Re = Kravtsov(inp, A=A_K, scatt=sigma_K)
#print(Re)
if model=='MMW':
Re = sizes_from_lambda_skewed(rhalo)
mask = np.ma.masked_inside(stars, masslow, massup).mask
Re = Re[mask]
stars = stars[mask]
occupation_distr = halos[mask]
binwidth = bins[1]-bins[0]
print(bins[1:]-0.5*binwidth)
Sigma = stars-2*Re-np.log10(2*np.pi) - 6 # -6 to convert from pc^-2 to kpc^-2
# bins = np.arange(-2,3,binwidth)
try:
hist = np.histogram(Sigma, bins=bins)[0] #Gargiulo definition of compacntess, Mstar/(2pi*R^2)>2000 msun/pc^2
return occupation_distr,Sigma,np.array([bins[1:]-0.5*binwidth, hist/V/(binwidth)])
except:
m = (masslow+massup)/2
print('Could not compute size function for mass='+str(m)+'and z='+str(redshift))
return 0,0,np.zeros(len(bins)-1)
def get_gammafunction(halos, redshift, V,A_K, sigma_K, stars, masslow,massup,model='K13',sigmaK_evo=False, mdef='vir', bins=np.arange(-2,3,0.05)):
rhalo = get_Rh(halos, redshift, mdef=mdef)
if model=='K13':
inp = rhalo*A_K
if sigmaK_evo:
sigma_K= 0.15+0.05*redshift
Re = Kravtsov(inp, A=A_K, scatt=sigma_K)
#print(Re)
if model=='MMW':
Re = sizes_from_lambda_skewed(rhalo)
mask = np.ma.masked_inside(stars, masslow, massup).mask
gamma = Re[mask]-0.75*(stars[mask]-11)
occupation_distr = halos[mask]
binwidth = bins[1]-bins[0]
# bins = np.arange(-2,3,binwidth)
try:
hist = np.histogram(gamma, bins=bins)[0]
return occupation_distr, gamma,np.array([bins[1:]-0.5*binwidth, hist/V/(binwidth)])
except:
m = (masslow+massup)/2
print('Could not compute size function for mass='+str(m)+'and z='+str(redshift))
return 0,0,np.zeros(len(bins)-1)
def get_mean_size(halos,redshift,A_K,sigma_K,stars,masslow,massup, sigmaK_evo=False):
rhalo = get_Rh(halos, redshift)
inp = rhalo*A_K
if sigmaK_evo:
sigma_K= 0.15+0.05*redshift
Re_ = Kravtsov(inp, A=A_K, scatt=sigma_K)
mask = np.ma.masked_inside(stars, masslow, massup).mask
try:
return 10**np.percentile(Re_[mask],50) #mean size evolution
except:
m = (masslow+massup)/2
print('Could not compute size evolution for mass='+str(m)+'and z='+str(redshift))
return np.nan
def Kravtsov(RA,A,scatt=0.1, redshift=None):
RA = np.log10(RA)
return np.random.normal(RA, scale=scatt)
def extract_catalog(N,M):
f=interp1d(N,M)
array_cumul=np.arange(min(N),max(N))
cat=f(array_cumul)
return cat
def get_halos(z, Vol,dlog10m=0.005,hmf_choice='despali16',mdef='vir' ):
####### set cosmology #########
cosmol=cosmo.setCosmology('planck15')
cosmo.setCurrent(cosmol)
##############################
Mvir=10**np.arange(10.,16,dlog10m) #Mh/h
if hmf_choice=='despali16':
massfunct = massFunction(x=Mvir, z=z, mdef=mdef, model='despali16', q_out='dndlnM')*np.log(10) #dn/dlog10M
elif hmf_choice=='rodriguezpuebla16':
massfunct = hmf_rp16(Mvir,z)*Mvir/np.log10(np.exp(1))
massfunct = massfunct*(cosmol.h)**3 #convert from massf*h**3
total_haloMF=massfunct.copy()
#massfunct = massFunction(x=Mvir, z=z, q_in='M',mdef='vir', model='despali16', q_out='dndlnM')*np.log(10) #dn/dlog10M
Mvir=np.log10(Mvir)
Mvir=Mvir-np.log10(cosmol.h) #convert from M/h
Ncum=Vol*(np.cumsum((total_haloMF*dlog10m)[::-1])[::-1])
halos=extract_catalog(Ncum,Mvir)
return halos
class get_SMHM:
def __init__(self):
np.random.seed(int(time()+os.getpid()*1000))
class moster13:
def __init__(self, scatteron=True, scatterevol=False):
self.scatteron = scatteron
self.scatterevol = scatterevol
def make(self, halos, z):
zparameter = np.divide(z, z+1)
M10, SHMnorm10, beta10, gamma10, Scatter = 11.590, 0.0351, 1.376, 0.608, 0.15
M11, SHMnorm11, beta11, gamma11 = 1.195, -0.0247, -0.826, 0.329
M = M10 + M11*zparameter
N = SHMnorm10 + SHMnorm11*zparameter
b = beta10 + beta11*zparameter
g = gamma10 + gamma11*zparameter
stars = np.power(10, halos) * (2*N*np.power( (np.power(np.power(10,halos-M), -b) + np.power(np.power(10,halos-M), g)), -1))
if self.scatteron:
if self.scatterevol:
if z<0.5:
scatt = 0.1
print('here')
else:
scatt =0.3
else:
scatt=0.3
stars = np.random.normal(np.log10(stars),scale=scatt)
return stars
return np.log10(stars)
def __call__(self,halos,z):
return self.make(halos,z)
class grylls19:
def __init__(self, scatteron=True, SE=False, PyMorph=False, cmodel=False):
self.scatteron = scatteron
self.SE = SE
self.PyMorph = PyMorph
self.cmodel = cmodel
def make(self, halos,z, constant):
zparameter = np.divide(z-0.1, z+1)
if self.SE:
M10, SHMnorm10, beta10, gamma10, Scatter = 12.0,0.032,1.5,0.56,0.15
M11, SHMnorm11, beta11, gamma11 = 0.6,-0.014,-0.7,0.08
if self.PyMorph:
print('pymorph')
M10, SHMnorm10, beta10, gamma10, Scatter = 11.92,0.032,1.64,0.53,0.15
M11, SHMnorm11, beta11, gamma11 = 0.58,-0.014,-0.69,0.03
if self.cmodel:
print('cmodel')
M10, SHMnorm10, beta10, gamma10, Scatter =11.91,0.029,2.09,0.64,0.15
M11, SHMnorm11, beta11, gamma11 = 0.52,-0.018,-1.03,0.084
if constant:
zparameter = 0.
M = M10 + M11*zparameter
N = SHMnorm10 + SHMnorm11*zparameter
b = beta10 + beta11*zparameter
g = gamma10 + gamma11*zparameter
stars = np.power(10, halos) * (2*N*np.power( (np.power(np.power(10,halos-M), -b) + np.power(np.power(10,halos-M), g)), -1))
if self.scatteron:
scatt=0.15
stars = np.random.normal(np.log10(stars),scale=scatt)
return stars
return np.log10(stars)
def __call__(self, halos, z,constant=False):
return self.make(halos,z, constant)
class rodriguezpuebla17:
def __init__(self, scatteron=True, scatterevol =True):
self.scatteron = scatteron
self.scatterevol = scatterevol
def P(self,x,y,z):
return y*z-x*z/(1+z)
def a(self,z):
return 1./(1.+z)
def nu(self,z):
nu=np.e**(-4*self.a(z)**2)
return nu
def m1(self,z):
m1=10**(11.548+self.P(-1.297,-0.026,z)*self.nu(z))
return m1
def eps(self,z):
eps=10**(-1.758+self.P(0.11,-0.061,z)*self.nu(z)+self.P(-0.023,0,z))
return eps
def alfa(self,z):
alfa=1.975+self.P(0.714,0.042,z)*self.nu(z)
return alfa
def delta(self,z):
delta=3.390+self.P(-0.472,-0.931,z)*self.nu(z)
return delta
def gamma(self,z):
gamma=0.498+self.P(-0.157,0,z)*self.nu(z)
return gamma
def scattRP17(self,z):
var=0.1+0.05*z
scatt=np.sqrt(0.15**2+np.power(var,2))
return scatt
def make(self, halos, z, constant):
if constant:
z = 0.1
x=halos-np.log10(self.m1(z))
first=-np.log10(10**(-self.alfa(z)*x)+1)
second= self.delta(z)*(np.log10(1+np.e**x))**self.gamma(z)
third=1+np.e**(10**(-x))
f=first+second/third
first=-np.log10(10**(-self.alfa(z)*0.)+1)
second= self.delta(z)*(np.log10(1+np.e**-0.))**self.gamma(z)
third=1+np.e**(10**(0.))
f0=first+second/third
stars=np.log10(self.eps(z)*self.m1(z))+ f-f0
if self.scatteron:
if self.scatterevol:
scatt = self.scattRP17(z)
else:
scatt = 0.15
stars = np.random.normal(stars,scale=scatt)
return stars
return stars
def __call__(self, halos,z, constant=False):
return self.make(halos,z,constant)
class Z19_LTGs_ETGs: #SHMR functional form; Behroozi+2010
def __init__(self, scatteron=True, choice='All'):
self.scatteron = scatteron
self.choice = choice
def g(self, x, a, g, d):
return (-np.log10(10**(-a*x)+1.) +
d*(np.log10(1.+np.exp(x)))**g/(1.+np.exp(10**(-x))))
def scatt(self, log10Mvir):
if self.choice=='All':
return 0.15 #needs change
elif self.choice=='LTGs':
return 0.12
elif self.choice=='ETGs':
return 0.14
def make(self,log10Mvir,z=None):
if self.choice=='LTGs':
alpha, delta, gamma, log10eps, log10M1 = 1.47439,4.26527,0.314474,-1.70524,11.4935
elif self.choice=='ETGs':
alpha, delta, gamma, log10eps, log10M1 = 6.10862,5.2244,0.336961,-2.19148,11.7417
elif self.choice=='All':
alpha, delta, gamma, log10eps, log10M1 = 1.72338,4.43454,0.422541,-1.88375,11.5095
elif self.choice=='Z19':
alpha, delta, gamma, log10eps, log10M1 = 2.352,3.797,0.6,-1.785,11.632
x = log10Mvir - log10M1
g1 = self.g(x, alpha, gamma, delta)
g0 = self.g(0, alpha, gamma, delta)
log10Ms = log10eps + log10M1 + g1 - g0
if self.scatteron:
log10Ms = np.random.normal(log10Ms, self.scatt(log10Mvir))
return log10Ms
def __call__(self, halos,z=None):
return self.make(halos,z=None) #z is dummy here for consistency with the call to other SMHM
class constantSMF:
def __init__(self, scatteron=True):
self.scatteron = scatteron
def a(self,z):
return 1./(1.+z)
def nu(self,z):
nu=np.e**(-4*self.a(z)**2)
return nu
def m1(self,z,M10=11.7845,M1a=1.074,M1z=-1.0596):
m1=10**(M10+(M1a*(self.a(z)-1)+M1z*z)*self.nu(z))
return m1
def eps(self,z,eps0=-1.8456,epsa=-0.9274,epsz=0.1595,epsa2=0.7849):
eps=10**(eps0+(epsa*(self.a(z)-1)+epsz*z)*self.nu(z)+epsa2*(self.a(z)-1))
return eps
def alfa(self,z,alfa0=-2.0105,alfaa=-0.0158):
alfa=alfa0+(alfaa*(self.a(z)-1))*self.nu(z)
return alfa
def delta(self,z,delta0=3.6179,deltaa=-1.3933,deltaz=-2.2852):
delta=delta0+(deltaa*(self.a(z)-1)+deltaz*z)*self.nu(z)
return delta
def gamma(self,z,gamma0=0.4822,gammaa=1.0908,gammaz=0.1906):
gamma=gamma0+(gammaa*(self.a(z)-1)+gammaz*z)*self.nu(z)
return gamma
def scatter(self,z):
var=0.1+0.05*z
scatt=np.sqrt(0.15**2+np.power(var,2))
return scatt
def make(self,halos,z):
x=halos-np.log10(self.m1(z))
first=-np.log10(10**(self.alfa(z)*x)+1)
second= self.delta(z)*(np.log10(1+np.e**x))**self.gamma(z)
third=1+np.e**(10**(-x))
f=first+second/third
first=-np.log10(10**(self.alfa(z)*0.)+1)
second= self.delta(z)*(np.log10(1+np.e**-0.))**self.gamma(z)
third=1+np.e**(10**(0.))
f0=first+second/third
stars=np.log10(self.eps(z)*self.m1(z))+ f-f0
if self.scatteron:
scatt = self.scatter(z)
stars = np.random.normal(stars,scale=scatt)
return stars
return stars
def __call__(self,halos,z):
return self.make(halos,z)
def DarkMatterToStellarMass(DM, z, Paramaters, ScatterOn = False, Scatter = 0.001, Pairwise = True):
"""
This funtion returns Stellar mass in log10 Msun, all arguments should be passed in simmilar cosmology (Planck 15 unless otherwise stated)
DM and z is longer than 1 are assumed pairwise if N == M, otherwise Array N is calculated for all elements (M) of z. If N==M but pairwise is not desired pass Pairwise == False
Args:
DM: Dark Matter in log10 Msun. Can be (1,), (N,), or (N, M)).
z: Redshift. Can be (1,) or (M,)
Parameters: Python Dictonary Containing Subdictonary 'AbnMtch':
Containing Booleans: 'z_Evo', 'Moster', 'Override_0', 'Override_z', 'G18'
Containing Parameters: 'Scatter'
Containing Dictonary: 'OverRide':
Containing Parameters: 'M10', 'SHMnorm10', 'beta10', 'gamma10', 'M11', 'SHMnorm11', 'beta11', 'gamma11'
ScatterOn: Bool to switch scatter on/off
Scatter: Scatter set low should be set in parameter section or sent via Scatter in dictonary.
Pairwise: Bool. If true and N==M N and M will not be calculated Pairwise
Returns:
Stellar mass array in log10 Msun. Shape will be (1,), (N,), or (N, M) depending on the sape of inputs.
Raises:
N/A
"""
np.random.seed(int(str(time()).split('.')[1])+os.getpid())
Paramaters = Paramaters['AbnMtch']
if Paramaters['z_Evo']:
if Paramaters['Moster']:
zparameter = np.divide(z, z+1)
elif Paramaters['Override_0'] or Paramaters['Override_z'] or Paramaters['G18'] or Paramaters['G18_notSE']:
zparameter = np.divide(z-0.1, z+1)
else:
zparameter = np.divide(z-0.1, z+1)
else:
zparameter = 0
if ScatterOn:
Scatter = Paramaters['Scatter']
if Paramaters['Override_0'] or Paramaters['Override_z']:
Override = Paramaters['Override']
# Go to RP17 abundance matching
if Paramaters['RP17']:
return SHMR_RP17(z, DM)
# parameters from moster 2013
if(Paramaters['Moster']):
M10, SHMnorm10, beta10, gamma10, Scatter = 11.590, 0.0351, 1.376, 0.608, 0.15
M11, SHMnorm11, beta11, gamma11 = 1.195, -0.0247, -0.826, 0.329
if(Paramaters['Moster10']):
M10, SHMnorm10, beta10, gamma10, Scatter = 11.884, 0.28320, 1.057, 0.556, 0.15
M11, SHMnorm11, beta11, gamma11 = 1.195, -0.0247, -0.826, 0.329
#paremeters from centrals Paper1
if(Paramaters['G18']):
M10, SHMnorm10, beta10, gamma10, Scatter = 11.95, 0.032, 1.61, 0.54, 0.11
M11, SHMnorm11, beta11, gamma11 = 0.4, -0.02, -0.6, -0.1
#paremeters from centrals Paper1 with a slight (-0.15) correction away from sersicexp
if(Paramaters['G18_notSE']):
M10, SHMnorm10, beta10, gamma10, Scatter = 11.95, 0.032, 1.61, 0.62, 0.11 #12.00, 0.022, 1.56, 0.55, 0.15
M11, SHMnorm11, beta11, gamma11 = 0.4, -0.02, -0.6, 0.0 #0.4, 0.0, -0.5, 0.1
if(Paramaters['G19_SE']):
M10, SHMnorm10, beta10, gamma10, Scatter = 11.925, 0.032,1.639,0.532,0.15 #12.00, 0.022, 1.56, 0.55, 0.15
M11, SHMnorm11, beta11, gamma11 = 0.576,-0.014,-0.693,0.03 #0.4, 0.0, -0.5, 0.1
if(Paramaters['G19_cMod']):
M10, SHMnorm10, beta10, gamma10, Scatter = 11.91,0.029,2.09,0.64,0.15 #12.0,0.032,1.74,0.66,0.15 #12.00, 0.022, 1.56, 0.55, 0.15
M11, SHMnorm11, beta11, gamma11 = 0.644, -0.019, -1.422, -0.043 #0.518,-0.018,-1.031,-0.084
#parameters to recreate the illistrius M*Mh
if(Paramaters['Illustris']):
M10, SHMnorm10, beta10, gamma10, Scatter = 11.8,0.018,1.5,0.31,0.15
M11, SHMnorm11, beta11, gamma11 = 0.0,-0.01,0,-0.12
#allows user to sent in their own abundance matching parameters either fixed at redshift 0/0.1 or evolving
if(Paramaters['Override_0']):
M10, SHMnorm10, beta10, gamma10 = Override['M10'], Override['SHMnorm10'], Override['beta10'], Override['gamma10']
M11, SHMnorm11, beta11, gamma11 = 0.4, -0.02, -0.6, -0.1 #1.195, -0.0247, -0.826, 0.329
if(Paramaters['Override_z']):
M10, SHMnorm10, beta10, gamma10 = Override['M10'], Override['SHMnorm10'], Override['beta10'], Override['gamma10']
M11, SHMnorm11, beta11, gamma11 = Override['M11'], Override['SHMnorm11'], Override['beta11'], Override['gamma11']
#For Pairfraction Testing
if Paramaters['PFT']:
M10, SHMnorm10, beta10, gamma10, Scatter = 11.925, 0.032,1.639,0.532,0.15 #12.00, 0.022, 1.56, 0.55, 0.15
M11, SHMnorm11, beta11, gamma11 = 0.576,-0.014,-0.693,0.03 #0.4, 0.0, -0.5, 0.1
if(Paramaters['M_PFT1']):
M10 = M10-0.25
if(Paramaters['M_PFT2']):
M11 = M11 + 0.1
if(Paramaters['M_PFT3']):
M11 = M11 - 0.1
if(Paramaters['N_PFT1']):
SHMnorm10 = SHMnorm10 + 0.004
if(Paramaters['N_PFT2']):
SHMnorm11 = SHMnorm11 + 0.007
if(Paramaters['N_PFT3']):
SHMnorm11 = SHMnorm11 - 0.007
if(Paramaters['b_PFT1']):
beta10 = beta10 - 0.3
if(Paramaters['b_PFT2']):
beta11 = beta11 + 0.3
if(Paramaters['b_PFT3']):
beta11 = beta11 - 0.3
if(Paramaters['g_PFT1']):
gamma10 = gamma10 + 0.06
if(Paramaters['g_PFT2']):
gamma11 = gamma11 + 0.2
if(Paramaters['g_PFT3']):
gamma11 = gamma11 - 0.2
if(Paramaters['g_PFT4']):
gamma10 = gamma10 - 0.1
if Paramaters['HMevo']:
M10, SHMnorm10, beta10, gamma10, Scatter = 11.91,0.029,2.09,0.64,0.15
M11, SHMnorm11, beta11 = 0.518,-0.018,-1.031
gamma11 = Paramaters["HMevo_param"]
#putting the parameters together for inclusion in the Moster 2010 equation
M = M10 + M11*zparameter
N = SHMnorm10 + SHMnorm11*zparameter
b = beta10 + beta11*zparameter
g = gamma10 + gamma11*zparameter
# Moster 2010 eq2
if ((np.shape(DM) == np.shape(z)) or np.shape(z) == (1,) or np.shape(z) == ()) and Pairwise:
SM = np.power(10, DM) * (2*N*np.power( (np.power(np.power(10,DM-M), -b) + np.power(np.power(10,DM-M), g)), -1))
else:
if (np.shape(DM)[0] != np.shape(z)[0]):
M = np.full((np.size(DM), np.size(z)), M).T
N = np.full((np.size(DM), np.size(z)), N).T
b = np.full((np.size(DM), np.size(z)), b).T
g = np.full((np.size(DM), np.size(z)), g).T
DM = np.full((np.size(z), np.size(DM)), DM)
SM = np.power(10, DM) * (2*N*np.power( (np.power(np.power(10,DM-M), -b) + np.power(np.power(10,DM-M), g)), -1))
#Adding Scatter
if(ScatterOn):
Scatter_Arr = np.random.normal(scale = Scatter, size = np.shape(SM))
return( np.log10(SM) + Scatter_Arr)
else:
return( np.log10(SM))