-
Notifications
You must be signed in to change notification settings - Fork 503
/
Copy pathmebane_faber_taa.py
149 lines (128 loc) · 5.81 KB
/
mebane_faber_taa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
'''
Buy/sell when price crosses above/below SMA;
Close position when price crosses below/above SMA;
Negative return and sharp ratio.
'''
import os
import numpy as np
import pandas as pd
import pytz
from datetime import datetime, timezone
import quanttrader as qt
import matplotlib.pyplot as plt
import empyrical as ep
import pyfolio as pf
# set browser full width
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
class MebaneFaberTAA(qt.StrategyBase):
def __init__(self,
nfast=20, nslow=200
):
super(MebaneFaberTAA, self).__init__()
self.nfast = nfast
self.nslow = nslow
self.current_time = None
def on_tick(self, tick_event):
self.current_time = tick_event.timestamp
# print('Processing {}'.format(self.current_time))
# wait for enough bars
for symbol in self.symbols:
df_hist = self._data_board.get_hist_price(symbol, self.current_time)
if df_hist.shape[0] < self.nslow:
return
# wait for month end
time_index = self._data_board.get_hist_time_index()
time_loc = time_index.get_loc(self.current_time)
if (time_loc != len(time_index)-1) & (time_index[time_loc].month == time_index[time_loc+1].month):
return
npv = self._position_manager.current_total_capital
stock_value = npv / 5
for symbol in self.symbols:
current_size = self._position_manager.get_position_size(symbol)
current_price = self._data_board.get_hist_price(symbol, self.current_time)['Close'].iloc[-1]
ma_fast = np.mean(self._data_board.get_hist_price(symbol, self.current_time)['Close'][-self.nfast:])
ma_slow = np.mean(self._data_board.get_hist_price(symbol, self.current_time)['Close'][-self.nslow:])
if ma_fast > ma_slow: # buy
target_size = (int)(stock_value / current_price)
self.adjust_position(symbol, size_from=current_size, size_to=target_size, timestamp=self.current_time)
print(f'{self.current_time}, LONG ORDER SENT, {symbol}, Price: {current_price:.2f}, '
f'fast sma: {ma_fast:.2f}, slow sma: {ma_slow:.2f}, Size: {target_size}')
else: # hold cash
target_size = 0
self.adjust_position(symbol, size_from=current_size, size_to=target_size, timestamp=self.current_time)
print(f'{self.current_time}, FLAT ORDER SENT, {symbol}, Price: {current_price:.2f}, '
f'fast sma: {ma_fast:.2f}, slow sma: {ma_slow:.2f}, Size: {target_size}')
if __name__ == '__main__':
etfs = ['SPY', 'EFA', 'TIP', 'GSG', 'VNQ']
benchmark = 'SPX'
init_capital = 100_000.0
test_start_date = datetime(2010,1,1, 8, 30, 0, 0, pytz.timezone('America/New_York'))
test_end_date = datetime(2019,12,31, 6, 0, 0, 0, pytz.timezone('America/New_York'))
strategy = MebaneFaberTAA()
strategy.set_capital(init_capital)
strategy.set_symbols(etfs)
strategy.set_params({'nfast': 20, 'nslow': 200})
backtest_engine = qt.BacktestEngine(test_start_date, test_end_date)
backtest_engine.set_capital(init_capital) # capital or portfolio >= capital for one strategy
for symbol in etfs:
data = qt.util.read_ohlcv_csv(os.path.join('../data/', f'{symbol}.csv'))
backtest_engine.add_data(symbol, data)
backtest_engine.set_strategy(strategy)
ds_equity, df_positions, df_trades = backtest_engine.run()
# save to excel
qt.util.save_one_run_results('./output', ds_equity, df_positions, df_trades)
# ------------------------- Evaluation and Plotting -------------------------------------- #
strat_ret = ds_equity.pct_change().dropna()
strat_ret.name = 'strat'
bm = qt.util.read_ohlcv_csv(os.path.join('../data/', f'{benchmark}.csv'))
bm_ret = bm['Close'].pct_change().dropna()
bm_ret.index = pd.to_datetime(bm_ret.index)
bm_ret = bm_ret[strat_ret.index]
bm_ret.name = 'benchmark'
perf_stats_strat = pf.timeseries.perf_stats(strat_ret)
perf_stats_all = perf_stats_strat
perf_stats_bm = pf.timeseries.perf_stats(bm_ret)
perf_stats_all = pd.concat([perf_stats_strat, perf_stats_bm], axis=1)
perf_stats_all.columns = ['Strategy', 'Benchmark']
drawdown_table = pf.timeseries.gen_drawdown_table(strat_ret, 5)
monthly_ret_table = ep.aggregate_returns(strat_ret, 'monthly')
monthly_ret_table = monthly_ret_table.unstack().round(3)
ann_ret_df = pd.DataFrame(ep.aggregate_returns(strat_ret, 'yearly'))
ann_ret_df = ann_ret_df.unstack().round(3)
print('-------------- PERFORMANCE ----------------')
print(perf_stats_all)
print('-------------- DRAWDOWN ----------------')
print(drawdown_table)
print('-------------- MONTHLY RETURN ----------------')
print(monthly_ret_table)
print('-------------- ANNUAL RETURN ----------------')
print(ann_ret_df)
pf.create_full_tear_sheet(
strat_ret,
benchmark_rets=bm_ret if benchmark else None,
positions=df_positions,
transactions=df_trades,
round_trips=False)
plt.show()
# if not run in jupyter
pf.plot_rolling_returns(strat_ret, factor_returns=bm_ret)
plt.show()
pf.plot_rolling_volatility(strat_ret, factor_returns=bm_ret)
plt.show()
pf.plot_rolling_sharpe(strat_ret)
plt.show()
pf.plot_drawdown_periods(strat_ret)
plt.show()
pf.plot_monthly_returns_heatmap(strat_ret)
plt.show()
pf.plot_annual_returns(strat_ret)
plt.show()
pf.plot_monthly_returns_dist(strat_ret)
plt.show()
pf.create_position_tear_sheet(strat_ret, df_positions)
plt.show()
pf.create_txn_tear_sheet(strat_ret, df_positions, df_trades)
plt.show()
pf.create_round_trip_tear_sheet(strat_ret, df_positions, df_trades)
plt.show()