-
Notifications
You must be signed in to change notification settings - Fork 56
/
mobilenet_m1.py
398 lines (345 loc) · 18.3 KB
/
mobilenet_m1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
"""MobileNet v1 models for Keras.
MobileNet is a general architecture and can be used for multiple use cases.
Depending on the use case, it can use different input layer size and
different width factors. This allows different width models to reduce
the number of multiply-adds and thereby
reduce inference cost on mobile devices.
MobileNets support any input size greater than 32 x 32, with larger image sizes
offering better performance.
The number of parameters and number of multiply-adds
can be modified by using the `alpha` parameter,
which increases/decreases the number of filters in each layer.
By altering the image size and `alpha` parameter,
all 16 models from the paper can be built, with ImageNet weights provided.
The paper demonstrates the performance of MobileNets using `alpha` values of
1.0 (also called 100 % MobileNet), 0.75, 0.5 and 0.25.
For each of these `alpha` values, weights for 4 different input image sizes
are provided (224, 192, 160, 128).
The following table describes the size and accuracy of the 100% MobileNet
on size 224 x 224:
----------------------------------------------------------------------------
Width Multiplier (alpha) | ImageNet Acc | Multiply-Adds (M) | Params (M)
----------------------------------------------------------------------------
| 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 |
| 0.75 MobileNet-224 | 68.4 % | 325 | 2.6 |
| 0.50 MobileNet-224 | 63.7 % | 149 | 1.3 |
| 0.25 MobileNet-224 | 50.6 % | 41 | 0.5 |
----------------------------------------------------------------------------
The following table describes the performance of
the 100 % MobileNet on various input sizes:
------------------------------------------------------------------------
Resolution | ImageNet Acc | Multiply-Adds (M) | Params (M)
------------------------------------------------------------------------
| 1.0 MobileNet-224 | 70.6 % | 529 | 4.2 |
| 1.0 MobileNet-192 | 69.1 % | 529 | 4.2 |
| 1.0 MobileNet-160 | 67.2 % | 529 | 4.2 |
| 1.0 MobileNet-128 | 64.4 % | 529 | 4.2 |
------------------------------------------------------------------------
Reference:
- [MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications](
https://arxiv.org/abs/1704.04861)
"""
from tensorflow.keras import backend
from tensorflow import keras
from tensorflow.python.keras.applications import imagenet_utils
from tensorflow.keras import layers
from tensorflow.python.keras.utils import data_utils
BASE_WEIGHT_PATH = "https://storage.googleapis.com/tensorflow/" "keras-applications/mobilenet/"
def MobileNet(
input_shape=None,
alpha=1.0,
depth_multiplier=1,
dropout=1e-3,
include_top=True,
weights="imagenet",
input_tensor=None,
pooling=None,
classes=1000,
classifier_activation="softmax",
**kwargs
):
"""Instantiates the MobileNet architecture.
Reference:
- [MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications](
https://arxiv.org/abs/1704.04861)
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in the `tf.keras.backend.image_data_format()`.
Note: each Keras Application expects a specific kind of input preprocessing.
For MobileNet, call `tf.keras.applications.mobilenet.preprocess_input`
on your inputs before passing them to the model.
Arguments:
input_shape: Optional shape tuple, only to be specified if `include_top`
is False (otherwise the input shape has to be `(224, 224, 3)` (with
`channels_last` data format) or (3, 224, 224) (with `channels_first`
data format). It should have exactly 3 inputs channels, and width and
height should be no smaller than 32. E.g. `(200, 200, 3)` would be one
valid value. Default to `None`.
`input_shape` will be ignored if the `input_tensor` is provided.
alpha: Controls the width of the network. This is known as the width
multiplier in the MobileNet paper. - If `alpha` < 1.0, proportionally
decreases the number of filters in each layer. - If `alpha` > 1.0,
proportionally increases the number of filters in each layer. - If
`alpha` = 1, default number of filters from the paper are used at each
layer. Default to 1.0.
depth_multiplier: Depth multiplier for depthwise convolution. This is
called the resolution multiplier in the MobileNet paper. Default to 1.0.
dropout: Dropout rate. Default to 0.001.
include_top: Boolean, whether to include the fully-connected layer at the
top of the network. Default to `True`.
weights: One of `None` (random initialization), 'imagenet' (pre-training
on ImageNet), or the path to the weights file to be loaded. Default to
`imagenet`.
input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to
use as image input for the model. `input_tensor` is useful for sharing
inputs between multiple different networks. Default to None.
pooling: Optional pooling mode for feature extraction when `include_top`
is `False`.
- `None` (default) means that the output of the model will be
the 4D tensor output of the last convolutional block.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will be applied.
classes: Optional number of classes to classify images into, only to be
specified if `include_top` is True, and if no `weights` argument is
specified. Defaults to 1000.
classifier_activation: A `str` or callable. The activation function to use
on the "top" layer. Ignored unless `include_top=True`. Set
`classifier_activation=None` to return the logits of the "top" layer.
**kwargs: For backwards compatibility only.
Returns:
A `keras.Model` instance.
Raises:
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
ValueError: if `classifier_activation` is not `softmax` or `None` when
using a pretrained top layer.
"""
if kwargs:
raise ValueError("Unknown argument(s): %s" % (kwargs,))
if not weights in {"imagenet", None}:
raise ValueError(
"The `weights` argument should be either "
"`None` (random initialization), `imagenet` "
"(pre-training on ImageNet), "
"or the path to the weights file to be loaded."
)
if weights == "imagenet" and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` ' "as true, `classes` should be 1000")
# Determine proper input shape and default size.
if input_shape is None:
default_size = 224
else:
if backend.image_data_format() == "channels_first":
rows = input_shape[1]
cols = input_shape[2]
else:
rows = input_shape[0]
cols = input_shape[1]
if rows == cols and rows in [128, 160, 192, 224]:
default_size = rows
else:
default_size = 224
input_shape = imagenet_utils.obtain_input_shape(
input_shape, default_size=default_size, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights
)
if backend.image_data_format() == "channels_last":
row_axis, col_axis = (0, 1)
else:
row_axis, col_axis = (1, 2)
rows = input_shape[row_axis]
cols = input_shape[col_axis]
if weights == "imagenet":
if depth_multiplier != 1:
raise ValueError("If imagenet weights are being loaded, " "depth multiplier must be 1")
if alpha not in [0.25, 0.50, 0.75, 1.0]:
raise ValueError("If imagenet weights are being loaded, " "alpha can be one of" "`0.25`, `0.50`, `0.75` or `1.0` only.")
if rows != cols or rows not in [128, 160, 192, 224]:
rows = 224
print(
"`input_shape` is undefined or non-square, "
"or `rows` is not in [128, 160, 192, 224]. "
"Weights for input shape (224, 224) will be"
" loaded as the default."
)
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = _conv_block(img_input, 32, alpha, strides=(1, 1))
x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)
x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
if include_top:
if backend.image_data_format() == "channels_first":
shape = (int(1024 * alpha), 1, 1)
else:
shape = (1, 1, int(1024 * alpha))
x = layers.GlobalAveragePooling2D()(x)
x = layers.Reshape(shape, name="reshape_1")(x)
x = layers.Dropout(dropout, name="dropout")(x)
x = layers.Conv2D(classes, (1, 1), padding="same", name="conv_preds")(x)
x = layers.Reshape((classes,), name="reshape_2")(x)
imagenet_utils.validate_activation(classifier_activation, weights)
x = layers.Activation(activation=classifier_activation, name="predictions")(x)
else:
if pooling == "avg":
x = layers.GlobalAveragePooling2D()(x)
elif pooling == "max":
x = layers.GlobalMaxPooling2D()(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = input_tensor
else:
inputs = img_input
# Create model.
model = keras.models.Model(inputs, x, name="mobilenet_%0.2f_%s" % (alpha, rows))
# Load weights.
if weights == "imagenet":
if alpha == 1.0:
alpha_text = "1_0"
elif alpha == 0.75:
alpha_text = "7_5"
elif alpha == 0.50:
alpha_text = "5_0"
else:
alpha_text = "2_5"
if include_top:
model_name = "mobilenet_%s_%d_tf.h5" % (alpha_text, rows)
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = data_utils.get_file(model_name, weight_path, cache_subdir="models")
else:
model_name = "mobilenet_%s_%d_tf_no_top.h5" % (alpha_text, rows)
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = data_utils.get_file(model_name, weight_path, cache_subdir="models")
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
"""Adds an initial convolution layer (with batch normalization and relu6).
Arguments:
inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last`
data format) or (3, rows, cols) (with `channels_first` data format).
It should have exactly 3 inputs channels, and width and height should
be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value.
filters: Integer, the dimensionality of the output space (i.e. the
number of output filters in the convolution).
alpha: controls the width of the network. - If `alpha` < 1.0,
proportionally decreases the number of filters in each layer. - If
`alpha` > 1.0, proportionally increases the number of filters in each
layer. - If `alpha` = 1, default number of filters from the paper are
used at each layer.
kernel: An integer or tuple/list of 2 integers, specifying the width and
height of the 2D convolution window. Can be a single integer to
specify the same value for all spatial dimensions.
strides: An integer or tuple/list of 2 integers, specifying the strides
of the convolution along the width and height. Can be a single integer
to specify the same value for all spatial dimensions. Specifying any
stride value != 1 is incompatible with specifying any `dilation_rate`
value != 1. # Input shape
4D tensor with shape: `(samples, channels, rows, cols)` if
data_format='channels_first'
or 4D tensor with shape: `(samples, rows, cols, channels)` if
data_format='channels_last'. # Output shape
4D tensor with shape: `(samples, filters, new_rows, new_cols)` if
data_format='channels_first'
or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if
data_format='channels_last'. `rows` and `cols` values might have
changed due to stride.
Returns:
Output tensor of block.
"""
channel_axis = 1 if backend.image_data_format() == "channels_first" else -1
filters = int(filters * alpha)
x = layers.Conv2D(filters, kernel, padding="same", use_bias=False, strides=strides, name="conv1")(inputs)
x = layers.BatchNormalization(axis=channel_axis, name="conv1_bn")(x)
return layers.ReLU(6.0, name="conv1_relu")(x)
def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1):
"""Adds a depthwise convolution block.
A depthwise convolution block consists of a depthwise conv,
batch normalization, relu6, pointwise convolution,
batch normalization and relu6 activation.
Arguments:
inputs: Input tensor of shape `(rows, cols, channels)` (with
`channels_last` data format) or (channels, rows, cols) (with
`channels_first` data format).
pointwise_conv_filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the pointwise convolution).
alpha: controls the width of the network. - If `alpha` < 1.0,
proportionally decreases the number of filters in each layer. - If
`alpha` > 1.0, proportionally increases the number of filters in each
layer. - If `alpha` = 1, default number of filters from the paper are
used at each layer.
depth_multiplier: The number of depthwise convolution output channels
for each input channel. The total number of depthwise convolution
output channels will be equal to `filters_in * depth_multiplier`.
strides: An integer or tuple/list of 2 integers, specifying the strides
of the convolution along the width and height. Can be a single integer
to specify the same value for all spatial dimensions. Specifying any
stride value != 1 is incompatible with specifying any `dilation_rate`
value != 1.
block_id: Integer, a unique identification designating the block number.
# Input shape
4D tensor with shape: `(batch, channels, rows, cols)` if
data_format='channels_first'
or 4D tensor with shape: `(batch, rows, cols, channels)` if
data_format='channels_last'. # Output shape
4D tensor with shape: `(batch, filters, new_rows, new_cols)` if
data_format='channels_first'
or 4D tensor with shape: `(batch, new_rows, new_cols, filters)` if
data_format='channels_last'. `rows` and `cols` values might have
changed due to stride.
Returns:
Output tensor of block.
"""
channel_axis = 1 if backend.image_data_format() == "channels_first" else -1
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
x = layers.ZeroPadding2D(((1, 1), (1, 1)), name="conv_pad_%d" % block_id)(inputs)
x = layers.DepthwiseConv2D((3, 3), padding="valid", depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name="conv_dw_%d" % block_id)(x)
x = layers.BatchNormalization(axis=channel_axis, name="conv_dw_%d_bn" % block_id)(x)
x = layers.ReLU(6.0, name="conv_dw_%d_relu" % block_id)(x)
x = layers.Conv2D(pointwise_conv_filters, (1, 1), padding="valid", use_bias=False, strides=(1, 1), name="conv_pw_%d" % block_id)(x)
x = layers.BatchNormalization(axis=channel_axis, name="conv_pw_%d_bn" % block_id)(x)
return layers.ReLU(6.0, name="conv_pw_%d_relu" % block_id)(x)
def preprocess_input(x, data_format=None):
return imagenet_utils.preprocess_input(x, data_format=data_format, mode="tf")
def decode_predictions(preds, top=5):
return imagenet_utils.decode_predictions(preds, top=top)
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
mode="", ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC
)
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__