-
Notifications
You must be signed in to change notification settings - Fork 56
/
IJB_evals.py
675 lines (577 loc) · 31.6 KB
/
IJB_evals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
#!/usr/bin/env python3
import os
import cv2
import numpy as np
import pandas as pd
from tqdm import tqdm
from skimage import transform
from sklearn.preprocessing import normalize
from sklearn.metrics import roc_curve, auc
try:
from importlib.metadata import version
tf_version = version('tensorflow').split(".")
try:
keras_version = version('keras').split(".")
except:
keras_version = tf_version
try:
tf_keras_version = version('tf_keras').split(".")
except:
tf_keras_version = keras_version
is_tf_use_legacy_keras = os.environ.get("TF_USE_LEGACY_KERAS", "0") == "1"
if int(tf_version[0]) >= 2 and int(tf_version[1]) >= 16 and int(tf_keras_version[0]) >= 3:
print("[WARNING] Currently tensorflow>=2.16 with keras 3 not supported, try pip install tf-keras~=2.16 and set TF_USE_LEGACY_KERAS=1 if error.")
elif int(tf_version[0]) >= 2 and int(tf_version[1]) >= 16 and not is_tf_use_legacy_keras:
os.environ["TF_USE_LEGACY_KERAS"] = "1"
print("[WARNING] Setting TF_USE_LEGACY_KERAS=1. Make sure this is ahead of importing tensorflow or keras.")
except:
pass
class Mxnet_model_interf:
def __init__(self, model_file, layer="fc1", image_size=(112, 112)):
import mxnet as mx
self.mx = mx
cvd = os.environ.get("CUDA_VISIBLE_DEVICES", "").strip()
if len(cvd) > 0 and int(cvd) != -1:
ctx = [self.mx.gpu(ii) for ii in range(len(cvd.split(",")))]
else:
ctx = [self.mx.cpu()]
prefix, epoch = model_file.split(",")
print(">>>> loading mxnet model:", prefix, epoch, ctx)
sym, arg_params, aux_params = self.mx.model.load_checkpoint(prefix, int(epoch))
all_layers = sym.get_internals()
sym = all_layers[layer + "_output"]
model = self.mx.mod.Module(symbol=sym, context=ctx, label_names=None)
model.bind(data_shapes=[("data", (1, 3, image_size[0], image_size[1]))])
model.set_params(arg_params, aux_params)
self.model = model
def __call__(self, imgs):
# print(imgs.shape, imgs[0])
imgs = imgs.transpose(0, 3, 1, 2)
data = self.mx.nd.array(imgs)
db = self.mx.io.DataBatch(data=(data,))
self.model.forward(db, is_train=False)
emb = self.model.get_outputs()[0].asnumpy()
return emb
class Torch_model_interf:
def __init__(self, model_file, image_size=(112, 112)):
import torch
self.torch = torch
cvd = os.environ.get("CUDA_VISIBLE_DEVICES", "").strip()
device_name = "cuda:0" if len(cvd) > 0 and int(cvd) != -1 else "cpu"
self.device = self.torch.device(device_name)
try:
self.model = self.torch.jit.load(model_file, map_location=device_name)
except:
print("Error: %s is weights only, please load and save the entire model by `torch.jit.save`" % model_file)
self.model = None
def __call__(self, imgs):
# print(imgs.shape, imgs[0])
imgs = imgs.transpose(0, 3, 1, 2).copy().astype("float32")
imgs = (imgs - 127.5) * 0.0078125
output = self.model(self.torch.from_numpy(imgs).to(self.device).float())
return output.cpu().detach().numpy()
class ONNX_model_interf:
def __init__(self, model_file, image_size=(112, 112)):
import onnxruntime as ort
ort.set_default_logger_severity(3)
self.ort_session = ort.InferenceSession(model_file)
self.output_names = [self.ort_session.get_outputs()[0].name]
self.input_name = self.ort_session.get_inputs()[0].name
def __call__(self, imgs):
imgs = imgs.transpose(0, 3, 1, 2).astype("float32")
imgs = (imgs - 127.5) * 0.0078125
outputs = self.ort_session.run(self.output_names, {self.input_name: imgs})
return outputs[0]
def keras_model_interf(model_file):
import tensorflow as tf
try:
from tensorflow_addons.layers import StochasticDepth
except:
pass
for gpu in tf.config.experimental.list_physical_devices("GPU"):
tf.config.experimental.set_memory_growth(gpu, True)
mm = tf.keras.models.load_model(model_file, compile=False)
return lambda imgs: mm((tf.cast(imgs, "float32") - 127.5) * 0.0078125).numpy()
def face_align_landmark(img, landmark, image_size=(112, 112), method="similar"):
tform = transform.AffineTransform() if method == "affine" else transform.SimilarityTransform()
src = np.array([[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.729904, 92.2041]], dtype=np.float32)
tform.estimate(landmark, src)
# ndimage = transform.warp(img, tform.inverse, output_shape=image_size)
# ndimage = (ndimage * 255).astype(np.uint8)
M = tform.params[0:2, :]
ndimage = cv2.warpAffine(img, M, image_size, borderValue=0.0)
if len(ndimage.shape) == 2:
ndimage = np.stack([ndimage, ndimage, ndimage], -1)
else:
ndimage = cv2.cvtColor(ndimage, cv2.COLOR_BGR2RGB)
return ndimage
def read_IJB_meta_columns_to_int(file_path, columns, sep=" ", skiprows=0, header=None):
# meta = np.loadtxt(file_path, skiprows=skiprows, delimiter=sep)
meta = pd.read_csv(file_path, sep=sep, skiprows=skiprows, header=header).values
return (meta[:, ii].astype("int") for ii in columns)
def extract_IJB_data_11(data_path, subset, save_path=None, force_reload=False):
if save_path == None:
save_path = os.path.join(data_path, subset + "_backup.npz")
if not force_reload and os.path.exists(save_path):
print(">>>> Reload from backup: %s ..." % save_path)
aa = np.load(save_path)
return (
aa["templates"],
aa["medias"],
aa["p1"],
aa["p2"],
aa["label"],
aa["img_names"],
aa["landmarks"],
aa["face_scores"],
)
if subset == "IJBB":
media_list_path = os.path.join(data_path, "IJBB/meta/ijbb_face_tid_mid.txt")
pair_list_path = os.path.join(data_path, "IJBB/meta/ijbb_template_pair_label.txt")
img_path = os.path.join(data_path, "IJBB/loose_crop")
img_list_path = os.path.join(data_path, "IJBB/meta/ijbb_name_5pts_score.txt")
else:
media_list_path = os.path.join(data_path, "IJBC/meta/ijbc_face_tid_mid.txt")
pair_list_path = os.path.join(data_path, "IJBC/meta/ijbc_template_pair_label.txt")
img_path = os.path.join(data_path, "IJBC/loose_crop")
img_list_path = os.path.join(data_path, "IJBC/meta/ijbc_name_5pts_score.txt")
print(">>>> Loading templates and medias...")
templates, medias = read_IJB_meta_columns_to_int(media_list_path, columns=[1, 2]) # ['1.jpg', '1', '69544']
print("templates: %s, medias: %s, unique templates: %s" % (templates.shape, medias.shape, np.unique(templates).shape))
# templates: (227630,), medias: (227630,), unique templates: (12115,)
print(">>>> Loading pairs...")
p1, p2, label = read_IJB_meta_columns_to_int(pair_list_path, columns=[0, 1, 2]) # ['1', '11065', '1']
print("p1: %s, unique p1: %s" % (p1.shape, np.unique(p1).shape))
print("p2: %s, unique p2: %s" % (p2.shape, np.unique(p2).shape))
print("label: %s, label value counts: %s" % (label.shape, dict(zip(*np.unique(label, return_counts=True)))))
# p1: (8010270,), unique p1: (1845,)
# p2: (8010270,), unique p2: (10270,) # 10270 + 1845 = 12115 --> np.unique(templates).shape
# label: (8010270,), label value counts: {0: 8000000, 1: 10270}
print(">>>> Loading images...")
with open(img_list_path, "r") as ff:
# 1.jpg 46.060 62.026 87.785 60.323 68.851 77.656 52.162 99.875 86.450 98.648 0.999
img_records = np.array([ii.strip().split(" ") for ii in ff.readlines()])
img_names = np.array([os.path.join(img_path, ii) for ii in img_records[:, 0]])
landmarks = img_records[:, 1:-1].astype("float32").reshape(-1, 5, 2)
face_scores = img_records[:, -1].astype("float32")
print("img_names: %s, landmarks: %s, face_scores: %s" % (img_names.shape, landmarks.shape, face_scores.shape))
# img_names: (227630,), landmarks: (227630, 5, 2), face_scores: (227630,)
print("face_scores value counts:", dict(zip(*np.histogram(face_scores, bins=9)[::-1])))
# {0.1: 2515, 0.2: 0, 0.3: 62, 0.4: 94, 0.5: 136, 0.6: 197, 0.7: 291, 0.8: 538, 0.9: 223797}
print(">>>> Saving backup to: %s ..." % save_path)
np.savez(
save_path,
templates=templates,
medias=medias,
p1=p1,
p2=p2,
label=label,
img_names=img_names,
landmarks=landmarks,
face_scores=face_scores,
)
print()
return templates, medias, p1, p2, label, img_names, landmarks, face_scores
def extract_gallery_prob_data(data_path, subset, save_path=None, force_reload=False):
if save_path == None:
save_path = os.path.join(data_path, subset + "_gallery_prob_backup.npz")
if not force_reload and os.path.exists(save_path):
print(">>>> Reload from backup: %s ..." % save_path)
aa = np.load(save_path)
return (
aa["s1_templates"],
aa["s1_subject_ids"],
aa["s2_templates"],
aa["s2_subject_ids"],
aa["probe_mixed_templates"],
aa["probe_mixed_subject_ids"],
)
if subset == "IJBC":
meta_dir = os.path.join(data_path, "IJBC/meta")
gallery_s1_record = os.path.join(meta_dir, "ijbc_1N_gallery_G1.csv")
gallery_s2_record = os.path.join(meta_dir, "ijbc_1N_gallery_G2.csv")
probe_mixed_record = os.path.join(meta_dir, "ijbc_1N_probe_mixed.csv")
else:
meta_dir = os.path.join(data_path, "IJBB/meta")
gallery_s1_record = os.path.join(meta_dir, "ijbb_1N_gallery_S1.csv")
gallery_s2_record = os.path.join(meta_dir, "ijbb_1N_gallery_S2.csv")
probe_mixed_record = os.path.join(meta_dir, "ijbb_1N_probe_mixed.csv")
print(">>>> Loading gallery feature...")
s1_templates, s1_subject_ids = read_IJB_meta_columns_to_int(gallery_s1_record, columns=[0, 1], skiprows=1, sep=",")
s2_templates, s2_subject_ids = read_IJB_meta_columns_to_int(gallery_s2_record, columns=[0, 1], skiprows=1, sep=",")
print("s1 gallery: %s, ids: %s, unique: %s" % (s1_templates.shape, s1_subject_ids.shape, np.unique(s1_templates).shape))
print("s2 gallery: %s, ids: %s, unique: %s" % (s2_templates.shape, s2_subject_ids.shape, np.unique(s2_templates).shape))
print(">>>> Loading prope feature...")
probe_mixed_templates, probe_mixed_subject_ids = read_IJB_meta_columns_to_int(probe_mixed_record, columns=[0, 1], skiprows=1, sep=",")
print("probe_mixed_templates: %s, unique: %s" % (probe_mixed_templates.shape, np.unique(probe_mixed_templates).shape))
print("probe_mixed_subject_ids: %s, unique: %s" % (probe_mixed_subject_ids.shape, np.unique(probe_mixed_subject_ids).shape))
print(">>>> Saving backup to: %s ..." % save_path)
np.savez(
save_path,
s1_templates=s1_templates,
s1_subject_ids=s1_subject_ids,
s2_templates=s2_templates,
s2_subject_ids=s2_subject_ids,
probe_mixed_templates=probe_mixed_templates,
probe_mixed_subject_ids=probe_mixed_subject_ids,
)
print()
return s1_templates, s1_subject_ids, s2_templates, s2_subject_ids, probe_mixed_templates, probe_mixed_subject_ids
def get_embeddings(model_interf, img_names, landmarks, batch_size=64, flip=True):
steps = int(np.ceil(len(img_names) / batch_size))
embs, embs_f = [], []
for batch_id in tqdm(range(0, len(img_names), batch_size), "Embedding", total=steps):
batch_imgs, batch_landmarks = img_names[batch_id : batch_id + batch_size], landmarks[batch_id : batch_id + batch_size]
ndimages = [face_align_landmark(cv2.imread(img), landmark) for img, landmark in zip(batch_imgs, batch_landmarks)]
ndimages = np.stack(ndimages)
embs.extend(model_interf(ndimages))
if flip:
embs_f.extend(model_interf(ndimages[:, :, ::-1, :]))
print(">>>> Converting embeddings to np.array...")
return np.array(embs), np.array(embs_f)
def process_embeddings(embs, embs_f=[], use_flip_test=True, use_norm_score=False, use_detector_score=True, face_scores=None):
print(">>>> process_embeddings: Norm {}, Detect_score {}, Flip {}...".format(use_norm_score, use_detector_score, use_flip_test))
if use_flip_test and len(embs_f) != 0:
embs = embs + embs_f
if use_norm_score:
embs = normalize(embs)
if use_detector_score and face_scores is not None:
embs = embs * np.expand_dims(face_scores, -1)
return embs
def image2template_feature(img_feats=None, templates=None, medias=None, choose_templates=None, choose_ids=None):
if choose_templates is not None: # 1:N
unique_templates, indices = np.unique(choose_templates, return_index=True)
unique_subjectids = choose_ids[indices]
else: # 1:1
unique_templates = np.unique(templates)
unique_subjectids = None
# template_feats = np.zeros((len(unique_templates), img_feats.shape[1]), dtype=img_feats.dtype)
template_feats = np.zeros((len(unique_templates), img_feats.shape[1]))
for count_template, uqt in tqdm(enumerate(unique_templates), "Extract template feature", total=len(unique_templates)):
(ind_t,) = np.where(templates == uqt)
face_norm_feats = img_feats[ind_t]
face_medias = medias[ind_t]
unique_medias, unique_media_counts = np.unique(face_medias, return_counts=True)
media_norm_feats = []
for u, ct in zip(unique_medias, unique_media_counts):
(ind_m,) = np.where(face_medias == u)
if ct == 1:
media_norm_feats += [face_norm_feats[ind_m]]
else: # image features from the same video will be aggregated into one feature
media_norm_feats += [np.mean(face_norm_feats[ind_m], 0, keepdims=True)]
media_norm_feats = np.array(media_norm_feats)
# media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True))
template_feats[count_template] = np.sum(media_norm_feats, 0)
template_norm_feats = normalize(template_feats)
return template_norm_feats, unique_templates, unique_subjectids
def verification_11(template_norm_feats=None, unique_templates=None, p1=None, p2=None, batch_size=10000):
try:
print(">>>> Trying cupy.")
import cupy as cp
template_norm_feats = cp.array(template_norm_feats)
score_func = lambda feat1, feat2: cp.sum(feat1 * feat2, axis=-1).get()
test = score_func(template_norm_feats[:batch_size], template_norm_feats[:batch_size])
except:
score_func = lambda feat1, feat2: np.sum(feat1 * feat2, -1)
template2id = np.zeros(max(unique_templates) + 1, dtype=int)
template2id[unique_templates] = np.arange(len(unique_templates))
steps = int(np.ceil(len(p1) / batch_size))
score = []
for id in tqdm(range(steps), "Verification"):
feat1 = template_norm_feats[template2id[p1[id * batch_size : (id + 1) * batch_size]]]
feat2 = template_norm_feats[template2id[p2[id * batch_size : (id + 1) * batch_size]]]
score.extend(score_func(feat1, feat2))
return np.array(score)
def evaluation_1N(query_feats, gallery_feats, query_ids, reg_ids, fars=[0.01, 0.1]):
print("query_feats: %s, gallery_feats: %s" % (query_feats.shape, gallery_feats.shape))
similarity = np.dot(query_feats, gallery_feats.T) # (19593, 3531)
top_1_count, top_5_count, top_10_count = 0, 0, 0
pos_sims, neg_sims, non_gallery_sims = [], [], []
for index, query_id in enumerate(query_ids):
if query_id in reg_ids:
gallery_label = np.argwhere(reg_ids == query_id)[0, 0]
index_sorted = np.argsort(similarity[index])[::-1]
top_1_count += gallery_label in index_sorted[:1]
top_5_count += gallery_label in index_sorted[:5]
top_10_count += gallery_label in index_sorted[:10]
pos_sims.append(similarity[index][reg_ids == query_id][0])
neg_sims.append(similarity[index][reg_ids != query_id])
else:
non_gallery_sims.append(similarity[index])
total_pos = len(pos_sims)
pos_sims, neg_sims, non_gallery_sims = np.array(pos_sims), np.array(neg_sims), np.array(non_gallery_sims)
print("pos_sims: %s, neg_sims: %s, non_gallery_sims: %s" % (pos_sims.shape, neg_sims.shape, non_gallery_sims.shape))
print("top1: %f, top5: %f, top10: %f" % (top_1_count / total_pos, top_5_count / total_pos, top_10_count / total_pos))
correct_pos_cond = pos_sims > neg_sims.max(1)
non_gallery_sims_sorted = np.sort(non_gallery_sims.max(1))[::-1]
threshes, recalls = [], []
for far in fars:
# thresh = non_gallery_sims_sorted[int(np.ceil(non_gallery_sims_sorted.shape[0] * far)) - 1]
thresh = non_gallery_sims_sorted[max(int((non_gallery_sims_sorted.shape[0]) * far) - 1, 0)]
recall = np.logical_and(correct_pos_cond, pos_sims > thresh).sum() / pos_sims.shape[0]
threshes.append(thresh)
recalls.append(recall)
# print("FAR = {:.10f} TPIR = {:.10f} th = {:.10f}".format(far, recall, thresh))
cmc_scores = list(zip(neg_sims, pos_sims.reshape(-1, 1))) + list(zip(non_gallery_sims, [None] * non_gallery_sims.shape[0]))
return top_1_count, top_5_count, top_10_count, threshes, recalls, cmc_scores
class IJB_test:
def __init__(self, model_file, data_path, subset, batch_size=64, force_reload=False, restore_embs=None):
templates, medias, p1, p2, label, img_names, landmarks, face_scores = extract_IJB_data_11(data_path, subset, force_reload=force_reload)
if model_file != None:
if not isinstance(model_file, str):
interf_func = model_file
elif model_file.endswith(".h5"):
interf_func = keras_model_interf(model_file)
elif model_file.endswith(".pth") or model_file.endswith(".pt"):
interf_func = Torch_model_interf(model_file)
elif model_file.endswith(".onnx") or model_file.endswith(".ONNX"):
interf_func = ONNX_model_interf(model_file)
else:
interf_func = Mxnet_model_interf(model_file)
self.embs, self.embs_f = get_embeddings(interf_func, img_names, landmarks, batch_size=batch_size)
elif restore_embs != None:
print(">>>> Reload embeddings from:", restore_embs)
aa = np.load(restore_embs)
if "embs" in aa and "embs_f" in aa:
self.embs, self.embs_f = aa["embs"], aa["embs_f"]
else:
print("ERROR: %s NOT containing embs / embs_f" % restore_embs)
exit(1)
print(">>>> Done.")
self.data_path, self.subset, self.force_reload = data_path, subset, force_reload
self.templates, self.medias, self.p1, self.p2, self.label = templates, medias, p1, p2, label
self.face_scores = face_scores.astype(self.embs.dtype)
def run_model_test_single(self, use_flip_test=True, use_norm_score=False, use_detector_score=True):
img_input_feats = process_embeddings(
self.embs,
self.embs_f,
use_flip_test=use_flip_test,
use_norm_score=use_norm_score,
use_detector_score=use_detector_score,
face_scores=self.face_scores,
)
template_norm_feats, unique_templates, _ = image2template_feature(img_input_feats, self.templates, self.medias)
score = verification_11(template_norm_feats, unique_templates, self.p1, self.p2)
return score
def run_model_test_bunch(self):
from itertools import product
scores, names = [], []
for use_norm_score, use_detector_score, use_flip_test in product([True, False], [True, False], [True, False]):
name = "N{:d}D{:d}F{:d}".format(use_norm_score, use_detector_score, use_flip_test)
print(">>>>", name, use_norm_score, use_detector_score, use_flip_test)
names.append(name)
scores.append(self.run_model_test_single(use_flip_test, use_norm_score, use_detector_score))
return scores, names
def run_model_test_1N(self, npoints=100):
fars_cal = [10**ii for ii in np.arange(-4, 0, 4 / npoints)] + [1] # plot in range [10-4, 1]
fars_show_idx = np.arange(len(fars_cal))[:: npoints // 4] # npoints=100, fars_show=[0.0001, 0.001, 0.01, 0.1, 1.0]
g1_templates, g1_ids, g2_templates, g2_ids, probe_mixed_templates, probe_mixed_ids = extract_gallery_prob_data(
self.data_path, self.subset, force_reload=self.force_reload
)
img_input_feats = process_embeddings(
self.embs,
self.embs_f,
use_flip_test=True,
use_norm_score=False,
use_detector_score=True,
face_scores=self.face_scores,
)
g1_templates_feature, g1_unique_templates, g1_unique_ids = image2template_feature(img_input_feats, self.templates, self.medias, g1_templates, g1_ids)
g2_templates_feature, g2_unique_templates, g2_unique_ids = image2template_feature(img_input_feats, self.templates, self.medias, g2_templates, g2_ids)
probe_mixed_templates_feature, probe_mixed_unique_templates, probe_mixed_unique_subject_ids = image2template_feature(
img_input_feats, self.templates, self.medias, probe_mixed_templates, probe_mixed_ids
)
print("g1_templates_feature:", g1_templates_feature.shape) # (1772, 512)
print("g2_templates_feature:", g2_templates_feature.shape) # (1759, 512)
print("probe_mixed_templates_feature:", probe_mixed_templates_feature.shape) # (19593, 512)
print("probe_mixed_unique_subject_ids:", probe_mixed_unique_subject_ids.shape) # (19593,)
print(">>>> Gallery 1")
g1_top_1_count, g1_top_5_count, g1_top_10_count, g1_threshes, g1_recalls, g1_cmc_scores = evaluation_1N(
probe_mixed_templates_feature, g1_templates_feature, probe_mixed_unique_subject_ids, g1_unique_ids, fars_cal
)
print(">>>> Gallery 2")
g2_top_1_count, g2_top_5_count, g2_top_10_count, g2_threshes, g2_recalls, g2_cmc_scores = evaluation_1N(
probe_mixed_templates_feature, g2_templates_feature, probe_mixed_unique_subject_ids, g2_unique_ids, fars_cal
)
print(">>>> Mean")
query_num = probe_mixed_templates_feature.shape[0]
top_1 = (g1_top_1_count + g2_top_1_count) / query_num
top_5 = (g1_top_5_count + g2_top_5_count) / query_num
top_10 = (g1_top_10_count + g2_top_10_count) / query_num
print("[Mean] top1: %f, top5: %f, top10: %f" % (top_1, top_5, top_10))
mean_tpirs = (np.array(g1_recalls) + np.array(g2_recalls)) / 2
show_result = {}
for id, far in enumerate(fars_cal):
if id in fars_show_idx:
show_result.setdefault("far", []).append(far)
show_result.setdefault("g1_tpir", []).append(g1_recalls[id])
show_result.setdefault("g1_thresh", []).append(g1_threshes[id])
show_result.setdefault("g2_tpir", []).append(g2_recalls[id])
show_result.setdefault("g2_thresh", []).append(g2_threshes[id])
show_result.setdefault("mean_tpir", []).append(mean_tpirs[id])
print(pd.DataFrame(show_result).set_index("far").to_markdown())
return fars_cal, mean_tpirs, g1_cmc_scores, g2_cmc_scores
def plot_roc_and_calculate_tpr(scores, names=None, label=None):
print(">>>> plot roc and calculate tpr...")
score_dict = {}
for id, score in enumerate(scores):
name = None if names is None else names[id]
if isinstance(score, str) and score.endswith(".npz"):
aa = np.load(score)
score = aa.get("scores", [])
label = aa["label"] if label is None and "label" in aa else label
score_name = aa.get("names", [])
for ss, nn in zip(score, score_name):
score_dict[nn] = ss
elif isinstance(score, str) and score.endswith(".npy"):
name = name if name is not None else os.path.splitext(os.path.basename(score))[0]
score_dict[name] = np.load(score)
elif isinstance(score, str) and score.endswith(".txt"):
# IJB meta data like ijbb_template_pair_label.txt
label = pd.read_csv(score, sep=" ", header=None).values[:, 2]
else:
name = name if name is not None else str(id)
score_dict[name] = score
if label is None:
print("Error: Label data is not provided")
return None, None
x_labels = [10 ** (-ii) for ii in range(1, 7)[::-1]]
fpr_dict, tpr_dict, roc_auc_dict, tpr_result = {}, {}, {}, {}
for name, score in score_dict.items():
fpr, tpr, _ = roc_curve(label, score)
roc_auc = auc(fpr, tpr)
fpr, tpr = np.flipud(fpr), np.flipud(tpr) # select largest tpr at same fpr
tpr_result[name] = [tpr[np.argmin(abs(fpr - ii))] for ii in x_labels]
fpr_dict[name], tpr_dict[name], roc_auc_dict[name] = fpr, tpr, roc_auc
tpr_result_df = pd.DataFrame(tpr_result, index=x_labels).T
tpr_result_df["AUC"] = pd.Series(roc_auc_dict)
tpr_result_df.columns.name = "Methods"
print(tpr_result_df.to_markdown())
# print(tpr_result_df)
try:
import matplotlib.pyplot as plt
fig = plt.figure()
for name in score_dict:
plt.plot(fpr_dict[name], tpr_dict[name], lw=1, label="[%s (AUC = %0.4f%%)]" % (name, roc_auc_dict[name] * 100))
title = "ROC on IJB" + name.split("IJB")[-1][0] if "IJB" in name else "ROC on IJB"
plt.xlim([10**-6, 0.1])
plt.xscale("log")
plt.xticks(x_labels)
plt.xlabel("False Positive Rate")
plt.ylim([0.3, 1.0])
plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True))
plt.ylabel("True Positive Rate")
plt.grid(linestyle="--", linewidth=1)
plt.title(title)
plt.legend(loc="lower right", fontsize="x-small")
plt.tight_layout()
plt.show()
except:
print("matplotlib plot failed")
fig = None
return tpr_result_df, fig
def plot_dir_far_cmc_scores(scores, names=None):
try:
import matplotlib.pyplot as plt
fig = plt.figure()
for id, score in enumerate(scores):
name = None if names is None else names[id]
if isinstance(score, str) and score.endswith(".npz"):
aa = np.load(score)
score, name = aa.get("scores")[0], aa.get("names")[0]
fars, tpirs = score[0], score[1]
name = name if name is not None else str(id)
auc_value = auc(fars, tpirs)
label = "[%s (AUC = %0.4f%%)]" % (name, auc_value * 100)
plt.plot(fars, tpirs, lw=1, label=label)
plt.xlabel("False Alarm Rate")
plt.xlim([0.0001, 1])
plt.xscale("log")
plt.ylabel("Detection & Identification Rate (%)")
plt.ylim([0, 1])
plt.grid(linestyle="--", linewidth=1)
plt.legend(fontsize="x-small")
plt.tight_layout()
plt.show()
except:
print("matplotlib plot failed")
fig = None
return fig
def parse_arguments(argv):
import argparse
default_save_result_name = "IJB_result/{model_name}_{subset}_{type}.npz"
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-m", "--model_file", type=str, default=None, help="Saved model, keras h5 / pytorch jit pth / onnx / mxnet")
parser.add_argument("-d", "--data_path", type=str, default="./", help="Dataset path containing IJBB and IJBC sub folder")
parser.add_argument("-s", "--subset", type=str, default="IJBB", help="Subset test target, could be IJBB / IJBC")
parser.add_argument("-b", "--batch_size", type=int, default=128, help="Batch size for get_embeddings")
parser.add_argument("-R", "--save_result", type=str, default=default_save_result_name, help="Filename for saving / restore result")
parser.add_argument("-L", "--save_label", action="store_true", help="Save label data, useful for plot only")
parser.add_argument("-E", "--save_embeddings", action="store_true", help="Save embeddings data")
parser.add_argument("-B", "--is_bunch", action="store_true", help="Run all 8 tests N{0,1}D{0,1}F{0,1}")
parser.add_argument("-N", "--is_one_2_N", action="store_true", help="Run 1:N test instead of 1:1")
parser.add_argument("-F", "--force_reload", action="store_true", help="Force reload, instead of using cache")
parser.add_argument("-P", "--plot_only", nargs="*", type=str, help="Plot saved results, Format 1 2 3 or 1, 2, 3 or *.npy")
args = parser.parse_known_args(argv)[0]
if args.plot_only != None and len(args.plot_only) != 0:
# Plot only
from glob2 import glob
score_files = []
for ss in args.plot_only:
score_files.extend(glob(ss.replace(",", "").strip()))
args.plot_only = score_files
elif args.model_file == None and args.save_result == default_save_result_name:
print("Please provide -m MODEL_FILE, see `--help` for usage.")
exit(1)
elif args.model_file != None:
if args.model_file.endswith(".h5") or args.model_file.endswith(".pth") or args.model_file.endswith(".pt") or args.model_file.endswith(".onnx"):
# Keras model file "model.h5", pytorch model ends with `.pth` or `.pt`, onnx model ends with `.onnx`
model_name = os.path.splitext(os.path.basename(args.model_file))[0]
else:
# MXNet model file "models/r50-arcface-emore/model,1"
model_name = os.path.basename(os.path.dirname(args.model_file))
if args.save_result == default_save_result_name:
type = "1N" if args.is_one_2_N else "11"
args.save_result = default_save_result_name.format(model_name=model_name, subset=args.subset, type=type)
return args
if __name__ == "__main__":
import sys
args = parse_arguments(sys.argv[1:])
if args.plot_only != None and len(args.plot_only) != 0:
if args.is_one_2_N:
plot_dir_far_cmc_scores(args.plot_only)
else:
plot_roc_and_calculate_tpr(args.plot_only)
else:
save_name = os.path.splitext(os.path.basename(args.save_result))[0]
save_items = {}
save_path = os.path.dirname(args.save_result)
if len(save_path) != 0 and not os.path.exists(save_path):
os.makedirs(save_path)
tt = IJB_test(args.model_file, args.data_path, args.subset, args.batch_size, args.force_reload, args.save_result)
if args.save_embeddings: # Save embeddings first, in case of any error happens later...
np.savez(args.save_result, embs=tt.embs, embs_f=tt.embs_f)
if args.is_one_2_N: # 1:N test
fars, tpirs, _, _ = tt.run_model_test_1N()
scores = [(fars, tpirs)]
names = [save_name]
save_items.update({"scores": scores, "names": names})
elif args.is_bunch: # All 8 tests N{0,1}D{0,1}F{0,1}
scores, names = tt.run_model_test_bunch()
names = [save_name + "_" + ii for ii in names]
label = tt.label
save_items.update({"scores": scores, "names": names})
else: # Basic 1:1 N0D1F1 test
score = tt.run_model_test_single()
scores, names, label = [score], [save_name], tt.label
save_items.update({"scores": scores, "names": names})
if args.save_embeddings:
save_items.update({"embs": tt.embs, "embs_f": tt.embs_f})
if args.save_label:
save_items.update({"label": label})
if args.model_file != None or args.save_embeddings: # embeddings not restored from file or should save_embeddings again
np.savez(args.save_result, **save_items)
if args.is_one_2_N:
plot_dir_far_cmc_scores(scores=scores, names=names)
else:
plot_roc_and_calculate_tpr(scores, names=names, label=label)