-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulator.py
237 lines (203 loc) · 8.02 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import random
import math
import os
import matplotlib.pyplot as plt
idletimelist=[]
busytimelist=[]
class Request:
def __init__(self,server_frequency):
global prev_arrival_time
self.mean_arrival_rate = 7.2
self.uniform_a = 0.75
self.uniform_b = 1.17
self.alpha1 = 0.43
self.alpha2 = 0.98
self.beta = 0.86
self.server_frequency = server_frequency
self.inter_arrival_time = self.generate_arrival_time()
prev_arrival_time += self.inter_arrival_time
self.arrival_time = prev_arrival_time
#print(self.arrival_time)
self.service_time = self.generate_service_time()
self.end_time = self.arrival_time + self.service_time
def generate_arrival_time(self):
a1 = random.expovariate(self.mean_arrival_rate)
a2 = random.uniform(self.uniform_a, self.uniform_b)
return a1*a2
def generate_service_time(self):
gama = (1-self.beta)/(math.pow(self.alpha2, (1-self.beta)) - math.pow(self.alpha1, (1-self.beta)))
time = random.random()*(self.alpha2 - self.alpha1) + self.alpha1
return time/self.server_frequency
class Server:
def __init__(self, frequency, power):
self.request_under_exec = None
self.waiting_queue = []
self.ready_queue = []
self.frequency = frequency
self.power = power
self.execution_time = 0
self.idle_time = 0
def set_frequency(self, frequency):
self.frequency = frequency
def is_busy(self):
if self.request_under_exec is None:
return False
else:
return True
def is_ready_queue_full(self):
if len(self.ready_queue) >= MAX_READY_QUEUE:
return True
else:
return False
def receive_request(self, request):
self.waiting_queue.append(request)
def printf(self):
print("Waiting Queue : " + str(len(self.waiting_queue)))
print("Ready Queue : " + str(len(self.ready_queue)))
print("Executing Request : " + str(self.request_under_exec))
print("Idle Time : " + str(self.idle_time))
print("Execution Time : " + str(self.execution_time))
input("Press enter to continue")
def update_queues(self):
if self.is_busy():
self.execution_time += UNIT_TIME
else:
self.idle_time += UNIT_TIME
if self.is_busy() and self.request_under_exec.end_time <= global_time:
self.request_under_exec = None
for request in self.waiting_queue:
if request.arrival_time <= global_time:
self.ready_queue.append(request)
self.waiting_queue.remove(request)
for request in self.ready_queue:
if not self.is_busy():
self.request_under_exec = request
self.ready_queue.remove(request)
class ServerPool:
def __init__(self, server_num, power):
self.server_num = server_num
self.servers = []
self.power = power
self.server_power = self.power / self.server_num
self.server_frequency = self.calculate_frequency(self.server_power)
for i in range(self.server_num):
s = Server(self.server_frequency, self.server_power)
self.servers.append(s)
def calculate_frequency(self, power):
return (1.25 + 0.31*((power/200) - 1))
def receive_requests(self, requests):
for i in range(len(requests)):
self.servers[i%self.server_num].receive_request(requests[i])
def are_all_servers_busy(self):
for server in self.servers:
if not server.is_ready_queue_full():
return False
return True
def is_waiting_queues_empty(self):
for server in self.servers:
if len(server.waiting_queue) == 0:
return True
return False
def update_servers(self):
for server in self.servers:
server.update_queues()
def printf(self):
i = 1
for server in self.servers:
print("Server : "+str(i))
server.printf()
i += 1
def get_average_idle_time(self):
idle_time = 0
for server in self.servers:
idle_time += server.idle_time
return idle_time / self.server_num
def get_average_busy_time(self):
busy_time = 0
for server in self.servers:
busy_time += server.execution_time
return busy_time / self.server_num
def generate_requests(num_request,server_frequency):
requests = []
for i in range(num_request):
r = Request(server_frequency)
requests.append(r)
return requests
def show_details():
os.system("clear")
print("Average Idle Time : ", server_pool.get_average_idle_time())
print("Average Busy Time : ", server_pool.get_average_busy_time())
total_time = server_pool.get_average_idle_time() + server_pool.get_average_busy_time()
percent_idle_time = server_pool.get_average_idle_time() * 100 / total_time
percent_busy_time = server_pool.get_average_busy_time() * 100 / total_time
print("Idle : ", percent_idle_time, "%")
print("Busy : ", percent_busy_time, "%")
idletimelist.append(percent_idle_time)
busytimelist.append(percent_busy_time)
TOTAL_SERVERS = 10
MAX_GLOBAL_TIME = 9999
MAX_READY_QUEUE = 10
total_power = 2000
SIMULATION_ID = input('Enter SIMULATION ID (use same ID for reproducibility) : ');
random.seed(SIMULATION_ID)
for i in range(1,TOTAL_SERVERS+1):
os.system("clear")
print("Starting Simulation for",i,"Servers")
prev_arrival_time = 0
global_time = 0
num_servers = i
server_pool = ServerPool(num_servers, total_power)
UNIT_TIME = 1/server_pool.server_frequency
print("Number of servers : ",server_pool.server_num)
print("Server Frequency : ",server_pool.server_frequency,"Ghz")
print("Server Power : ",server_pool.server_power,"Watts")
input("Press Enter to continue..")
print(num_servers*100,"request generated...")
requests = generate_requests(num_servers*100,server_pool.server_frequency)
server_pool.receive_requests(requests)
print("Simulation is running")
success = False
while True:
server_pool.update_servers()
if server_pool.are_all_servers_busy():
break
global_time += UNIT_TIME
if server_pool.is_waiting_queues_empty():
print(num_servers * 100, "request generated...")
requests = generate_requests(num_servers * 100, server_pool.server_frequency)
server_pool.receive_requests(requests)
show_details()
show_details()
if global_time >= MAX_GLOBAL_TIME:
print("Simulation passed system is stable with ", server_pool.server_num, "Servers ON")
success = True
break;
print("Global Time : ",global_time)
import matplotlib.pyplot as plt2
stringOfNoServers='Total Servers: '+str(i)
plt2.plot(total_power,global_time, 'ro')
plt2.title(stringOfNoServers)
plt2.ylabel('Global Time')
plt2.xlabel('Power')
plt2.axis([0, 2000, 0, 50])
plt2.savefig('GlobalTimeVSTotalPower'+str(i)+'.png')
plt2.gcf().clear()
plt2.plot(TOTAL_SERVERS,global_time, 'ro')
plt2.title(stringOfNoServers)
plt2.ylabel('Global Time')
plt2.xlabel('Total Servers')
plt2.axis([0, 10, 0, 50])
plt2.savefig('GlobalTimeVSTotalSevers'+str(i)+'.png')
plt2.gcf().clear()
if not success:
print("Congestion is too much try to Switch ON some more Servers")
print(busytimelist)
print(idletimelist)
plt.plot(busytimelist,idletimelist, 'ro')
plt.title(stringOfNoServers)
plt.ylabel('Idle Time')
plt.xlabel('Busy Time')
plt.axis([0, 100, 0, 100])
input("Press enter to continue")
plt.savefig('idleVSbusyTime'+str(i)+'.png')
plt.gcf().clear()