-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_loop.jl
415 lines (360 loc) · 17.1 KB
/
training_loop.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
module TrainingLoop
using Dates: now
using Logging: SimpleLogger, Info
using Printf: @sprintf
using Statistics: mean, var
using Random: rand!, seed!
using BSON # we currently use a fork (pr #47) due to issue #3
import Flux
using JLD2
import JSON
using TensorBoardLogger
import Transformers
using ..DataIterator
using ..InputStatistics
using ..ModelUtils
using ..TrainingUtils
using ..LSTM
using ..Transformer
using ..RandomPredictor
export trainingloop!, TrainingParameters, TPs
Base.@kwdef struct TrainingParameters
epochs::Integer = 10
lr::Float64 = 0.0002
batch_size::Integer = 32
warmupepochs::Integer = 0 # TODO unused
warmuplr::Float64 = 0.00005 # TODO unused
logevery::Integer = 300
saveevery::Integer = 1500
use_bson::Bool = false
testratio::AbstractFloat = 0.1
buffer_size::Integer = 4
dataiter_threads::Integer = 0
per_tile::Bool = false
reverse_rows::Bool = false
logdir::AbstractString = joinpath("exps", newexpdir())
params_logfile::AbstractString = "params.json"
logfile::AbstractString = "training.log"
earlystoppingwaitepochs::Integer = 10
earlystoppingthreshold::AbstractFloat = Inf32
criterion::Function = Flux.mse
use_soft_criterion::Bool = false
overfit_on_batch::Bool = false
modeltype::Union{Type{<:LearningModel}, Nothing} = nothing
seed::Integer = 0
end
"Shorthand for TrainingParameters for interactive use."
const TPs = TrainingParameters
# TODO save losses in own file to save space but support branching from them
# possibly by storing the losses file in the model cp and creating a new one if loading
# a model
#= TODO
Create struct for experimental parameters including model to:
1: simplify saving
2: dispatch training step and loss functions (maybe?)
3: simplify data iterator interface: Instead of passing stuff like `per_tile` and
friends, instead have them in the struct
4: using the struct, automatically load the correct db, data iterator and pass the
correct arguments to the SequenceGenerator module.
=#
function trainingloop!(model::Union{LearningModel, AbstractString}, dbpath::AbstractString,
params::TrainingParameters=TrainingParameters())
seed!(params.seed)
set_zero_subnormals(true)
# Initialize CURAND
rand!(togpu(zeros(2)))
paramdict = Dict{Symbol, Any}(field => getproperty(params, field) |>
x -> x isa Function ? Symbol(x) : x
for field in propertynames(params))
paramdict[:dbpath] = dbpath
db = loaddb(dbpath)
trainindices, testindices = traintestsplit(db, params.testratio)
if params.overfit_on_batch
if params.overfit_on_batch isa Bool
trainindices = view(trainindices, firstindex(trainindices):16)
else
trainindices = view(trainindices,
firstindex(trainindices):params.overfit_on_batch)
end
testindices = trainindices
end
use_bson = Val(params.use_bson)
if model isa AbstractString
paramdict[:modelpath] = model
(model, optimizer, trainlosses, meanlosses, varlosses, past_steps) = loadcp(
model, params.modeltype, use_bson)
else
optimizer = Flux.ADAM(params.lr)
trainlosses = Float32[]
"Means of test losses."
meanlosses = eltype(trainlosses)[]
"Variances of test losses."
varlosses = eltype(trainlosses)[]
past_steps = UInt64(0)
end
model::LearningModel
paramdict[:modelparams] = Dict{Symbol, Any}(k => v isa Function ? Symbol(v) : v
for (k, v) in model.hyperparams)
epochs = params.epochs
batch_size = params.batch_size
logdir = params.logdir
logevery = params.logevery
saveevery = params.saveevery
maxmeanloss = typemin(eltype(trainlosses))
maxvarloss = typemin(eltype(trainlosses))
maxvarlossdigits = 0 # Predefined in case `varloss` is NaN.
local maxmeanlossdigits
local testlosses
steps = UInt64(0)
dataiterparams = dataiteratorparams(model)
trainiter = dataiterator(db, params.buffer_size, trainindices, batch_size,
params.dataiter_threads, params.per_tile, params.reverse_rows;
dataiterparams...)
testiter = dataiterator(db, params.buffer_size, testindices, batch_size,
params.dataiter_threads, params.per_tile, params.reverse_rows;
dataiterparams...)
# TODO store max loss and log (as in logging) normalized loss (maybe).
# only applicable when sequences are padded to have the same length
# TODO make function for that so it can be calculated online; then maybe normalize loss
# for training
if params.use_soft_criterion
loss = makesoftloss(model, params.criterion)
else
loss = makeloss(model, params.criterion)
end
parameters = Flux.params(model)
earlystoppingthreshold = params.earlystoppingthreshold
earlystoppingthreshold < 1 && (earlystoppingthreshold += 1)
earlystoppingwaitepochs = params.earlystoppingwaitepochs
mkpath(logdir)
# Save parameters
open(joinpath(logdir, params.params_logfile), "w") do io
JSON.print(io, paramdict, 4)
end
# Free `paramdict`
paramdict = nothing
log_io = open(joinpath(logdir, params.logfile), "a")
@fastmath try
logger = SimpleLogger(log_io)
tblogger = TBLogger(joinpath(logdir, "tensorboard"), min_level=Info)
past_steps > 0 && logprint(logger, "Loaded model with $past_steps steps.")
# To get local time instead of UTC for printing and filenames:
starttimestr = replace(string(now()), ':' => '-')
starttime = time()
logprint(logger, "Starting training at $starttimestr for $epochs epochs. "
* "Seed: $(params.seed).")
# Initial test
testlosses = testmodel(model, testiter, testindices, batch_size,
dataiterparams, loss)
meanloss = mean(testlosses)
varloss = var(testlosses, mean=meanloss)
if past_steps == 0
@tblog(tblogger, meantestloss=meanloss, vartestloss=varloss,
log_step_increment=0)
push!(meanlosses, meanloss)
push!(varlosses, varloss)
else
@tblog(tblogger, log_step_increment=convert(Int, past_steps))
end
timediff = time() - starttime
logprint(logger, "Initial mean test loss: $(@sprintf("%.4f", meanloss)) "
* "(variance: $(@sprintf("%.3f", varloss))); "
* "total time: $(@sprintf("%.2f", timediff / 60)) min.")
for epoch in 1:epochs
# Cannot iterate directly over a RemoteChannel.
for (i, j) in zip(1:cld(length(trainindices), batch_size),
Iterators.countfrom(1, batch_size))
# Continue exactly where training stopped.
if steps < past_steps
take!(trainiter)
steps += 1
continue
end
training_step!(model, parameters, optimizer, trainiter, dataiterparams,
loss, trainlosses, tblogger)
steps += 1
if logevery != 0 && steps % logevery == 0
testlosses = testmodel(model, testiter, testindices, batch_size,
dataiterparams, loss)
meanloss = mean(testlosses)
varloss = var(testlosses, mean=meanloss)
@tblog(tblogger, meantestloss=meanloss, vartestloss=varloss,
log_step_increment=0)
if meanloss > maxmeanloss
maxmeanloss = meanloss
maxmeanlossdigits = ndigits(trunc(Int, maxmeanloss)) + 5
end
if varloss > maxvarloss
maxvarloss = varloss
maxvarlossdigits = ndigits(trunc(Int, maxvarloss)) + 4
end
push!(meanlosses, meanloss)
push!(varlosses, varloss)
if length(meanlosses) > 1
lossdiff = meanloss - meanlosses[end - 1]
lossratio = meanloss / meanlosses[end - 1]
else
lossdiff = 0
end
timediff = time() - starttime
logprint(logger, "Epoch $(lpad(epoch, ndigits(epochs))) / "
* "$epochs; sequence "
* "$(lpad(j, ndigits(length(trainindices)))) / "
* "$(length(trainindices)); mean test loss: "
* "$(lpad(@sprintf("%.4f", meanloss), maxmeanlossdigits)) "
* "(variance: "
* "$(lpad(@sprintf("%.3f", varloss), maxvarlossdigits))); "
* "mean time per step: "
* "$(@sprintf("%.3f", timediff / (steps - past_steps))) s; "
* "total time: $(@sprintf("%.2f", timediff / 60)) min.")
# Early stopping
if (epoch > earlystoppingwaitepochs && lossdiff > 0
&& lossratio >= earlystoppingthreshold)
savecp(model, optimizer, trainlosses, testlosses, meanlosses,
varlosses, steps, logdir, starttimestr, use_bson)
logprint(logger, "Early stopping activated after $steps training "
* "steps ($epoch epochs, $j sequences in current epoch). "
* "Loss increase: $meanloss - $(meanlosses[end - 1]) = "
* "$(round(lossdiff, digits=3)) "
* "($(round((lossratio - 1) * 100, digits=2)) %). "
* "Total time: $(round(timediff / 60, digits=2)) min.")
cleanupall(trainiter, testiter, log_io)
return (model, trainlosses, testlosses, meanlosses, varlosses,
db, trainindices, testindices)
end
end
if saveevery != 0 && steps % saveevery == 0
if logevery != 0 && steps % logevery != 0
testlosses = testmodel(model, testiter, testindices, batch_size,
dataiterparams, loss)
meanloss = mean(testlosses)
varloss = var(testlosses, mean=meanloss)
@tblog(tblogger, meantestloss=meanloss, vartestloss=varloss,
log_step_increment=0)
push!(meanlosses, meanloss)
push!(varlosses, varloss)
end
savecp(model, optimizer, trainlosses, testlosses, meanlosses,
varlosses, steps, logdir, starttimestr, use_bson)
logprint(logger, "Saved checkpoint after $steps training steps.")
end
end
end
savecp(model, optimizer, trainlosses, testlosses, meanlosses,
varlosses, steps, logdir, starttimestr, use_bson)
logprint(logger, "Training finished after $steps training steps and "
* "$(round((time() - starttime) / 60, digits=2)) minutes.")
finally
cleanupall(trainiter, testiter, log_io)
end
return (model, trainlosses, testlosses, meanlosses, varlosses,
db, trainindices, testindices)
end
"""
Update the given model with a single training step on the next data point in the
given `trainiter`. Return the loss.
"""
function training_step!(model, parameters, optimizer, trainiter, dataiterparams,
loss, trainlosses, tblogger)
batch = batchtogpu(take!(trainiter))
# Construct target
target = maketarget(batch)
l = Flux.data(step!(model, parameters, optimizer, loss, batch, target))
push!(trainlosses, l)
@tblog tblogger trainloss=l
return l
end
"""
Return a `Vector{Float32}` of losses obtained by applying the given model to all data in
the `testiter`.
"""
function testmodel(model, testiter, testindices, batch_size, dataiterparams, loss)
Flux.testmode!(model)
testlosses = Float32[]
for i in 1:cld(length(testindices), batch_size)
batch = batchtogpu(take!(testiter))
# Construct target
target = maketarget(batch)
l = Flux.data(calculate_loss(model, loss, batch, target))
push!(testlosses, l)
end
Flux.testmode!(model, false)
return testlosses
end
function getmaxloss(batch, dataiterparams, loss)
target = maketarget(batch)
loss(ones(eltype(target), size(target)) .- target, target)
end
# Numbered Vararg so we can make sure we didn't miss one without having to list them all.
cleanupall(args::Vararg{Any, 3}) = foreach(cleanup, args)
function loadcp(cppath::AbstractString, modeltype::Nothing, use_bson::Val{true})
cp = BSON.load(cppath)
model = togpu(cp[:model]::LearningModel)
optimizer, trainlosses, meanlosses, varlosses, past_steps = loadother(cp, use_bson)
return model, optimizer, trainlosses, meanlosses, varlosses, past_steps
end
function loadcp(cppath::AbstractString, modeltype::Type{<:LearningModel},
use_bson::Val{true})
cp = BSON.load(cppath)
model = togpu(cp[:model]::modeltype)
optimizer, trainlosses, meanlosses, varlosses, past_steps = loadother(cp, use_bson)
return model, optimizer, trainlosses, meanlosses, varlosses, past_steps
end
function loadcp(cppath::AbstractString, modeltype::Nothing, use_bson::Val{false})
jldopen(cppath) do cp
model = togpu(cp["model"]::LearningModel)
optimizer, trainlosses, meanlosses, varlosses, past_steps = loadother(cp, use_bson)
return model, optimizer, trainlosses, meanlosses, varlosses, past_steps
end
end
function loadcp(cppath::AbstractString, modeltype::Type{<:LearningModel},
use_bson::Val{false})
jldopen(cppath) do cp
model = togpu(cp["model"]::modeltype)
optimizer, trainlosses, meanlosses, varlosses, past_steps = loadother(cp, use_bson)
return model, optimizer, trainlosses, meanlosses, varlosses, past_steps
end
end
loadother(cp, use_bson::Val{true}) = loadother(cp, Symbol)
loadother(cp, use_bson::Val{false}) = loadother(cp, String)
function loadother(cp, cpkeytype::Type)
optimizer::Flux.ADAM = togpu(cp[cpkeytype("optimizer")])
trainlosses::Vector{Float32} = cp[cpkeytype("trainlosses")]
meanlosses::Vector{eltype(trainlosses)} = cp[cpkeytype("meanlosses")]
varlosses::Vector{eltype(trainlosses)} = cp[cpkeytype("varlosses")]
past_steps::UInt64 = cp[cpkeytype("steps")]
return optimizer, trainlosses, meanlosses, varlosses, past_steps
end
function savecp(model, optimizer, trainlosses, testlosses, meanlosses,
varlosses, steps, logdir, starttimestr, use_bson::Val{true})
bson(joinpath(logdir, "model-cp_$steps-steps_loss-$(meanlosses[end])_"
* "$starttimestr.bson"),
model=tocpu(model), optimizer=tocpu(optimizer), steps=steps,
trainlosses=trainlosses, testlosses=testlosses,
meanlosses=meanlosses, varlosses=varlosses)
end
function savecp(model, optimizer, trainlosses, testlosses, meanlosses,
varlosses, steps, logdir, starttimestr, use_bson::Val{false})
# We use this signature so we don't use `mmap`, trading speed for stability.
# See https://github.com/JuliaIO/JLD2.jl/issues/55
jldopen(joinpath(logdir, "model-cp_$steps-steps_loss-$(meanlosses[end])_"
* "$starttimestr.jld2"), true, true, true, IOStream,
compress=true) do io
# TODO only try to do this when JLD (not JLD2) is used
# addrequire(io, :Flux)
# TODO Maybe dispatch so we don't always save this.
# addrequire(io, :Transformers)
write(io, "model", tocpu(model))
write(io, "optimizer", tocpu(optimizer))
write(io, "steps", steps)
write(io, "trainlosses", trainlosses)
write(io, "testlosses", testlosses)
write(io, "meanlosses", meanlosses)
write(io, "varlosses", varlosses)
end
end
function test_trainingloop(dbpath::AbstractString="levels_1d_flags_t.jdb")
model = LSTM.lstm1d()
@time trainingloop!(model, dbpath, 1)
end
end # module