-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_training.jl
697 lines (611 loc) · 29.8 KB
/
gan_training.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
module GANTraining
using Dates: now
using Logging: SimpleLogger, Info
using Printf: @sprintf
using Statistics: mean, var
using Random: seed!, shuffle!
using BSON
import Flux
using Flux.Tracker: gradient
using JLD2
import JSON
using TensorBoardLogger
using ..DataIterator
using ..GAN
using ..WassersteinGAN
using ..MetadataPredictor
using ..ModelUtils
using ..TrainingUtils
export gan_trainingloop!, GANTrainingParameters, GTPs
Base.@kwdef struct GANTrainingParameters
epochs::Integer = 10
lr::Float64 = 0.0002
optimizer::Type = Flux.ADAM
betas::Tuple{Float64, Float64} = (0.5, 0.999)
optimizer_args::Tuple = ()
optimizer_kwargs::NamedTuple = NamedTuple()
batch_size::Integer = 32
d_warmup_steps::Integer = 0
d_steps_per_g_step::Integer = 1
const_noise_batch_size::Integer = 16
logevery::Integer = 200
saveevery::Integer = 1000
use_bson::Bool = false
buffer_size::Integer = 3
dataiter_threads::Integer = 0
logdir::AbstractString = joinpath("exps", newexpdir("gan"))
params_logfile::AbstractString = "params.json"
logfile::AbstractString = "training.log"
earlystoppingwaitepochs::Integer = 10
earlystoppingthreshold::AbstractFloat = Inf32
criterion::Function = Flux.binarycrossentropy
overfit_on_batch::Bool = false
meta_lr::Float64 = 0.001
meta_criterion::Function = Flux.mse
meta_testratio::AbstractFloat = 0.1
seed::Integer = 0
end
"Shorthand for GANTrainingParameters for interactive use."
const GTPs = GANTrainingParameters
# TODO probably remove optional meta_model training
function gan_trainingloop!(d_model::Union{AbstractDiscriminator, AbstractString},
g_model::Union{AbstractGenerator, AbstractString},
dbpath::AbstractString,
params::GANTrainingParameters=GANTrainingParameters(),
meta_model::Union{LearningModel, AbstractString, Nothing}=nothing)
seed!(params.seed)
set_zero_subnormals(true)
paramdict = Dict{Symbol, Any}(field => getproperty(params, field) |>
x -> x isa Function ? Symbol(x) : x
for field in propertynames(params))
paramdict[:dbpath] = dbpath
db = loaddb(dbpath)
overfit_on_batch = params.overfit_on_batch
if overfit_on_batch
if overfit_on_batch isa Bool
trainindices = collect(one(UInt):convert(UInt, 16))
else
trainindices = collect(one(UInt):convert(UInt, overfit_on_batch))
end
testindices = @view trainindices[firstindex(trainindices):end]
else
trainindices = collect(one(UInt):convert(UInt, length(db)))
testindices = view(trainindices,
firstindex(trainindices):round(UInt, length(trainindices)
* (1 - params.meta_testratio)))
end
shuffle!(trainindices)
optimtype = params.optimizer
if Base.isiterable(optimtype) && length(optimtype) > 1
d_optimtype, g_optimtype = optimtype
else
d_optimtype, g_optimtype = (optimtype, optimtype)
end
lr = params.lr
length(lr) > 1 || (lr = (lr, lr))
if params.optimizer === Flux.ADAM
betas = params.betas
length(betas[1]) > 1 || (betas = (betas, betas))
delete!(paramdict, :optimizer_args)
delete!(paramdict, :optimizer_kwargs)
else
optim_args = params.optimizer_args
length(optim_args) > 1 || (optim_args = (optim_args, optim_args))
optim_kwargs = params.optimizer_kwargs
if length(optim_kwargs) <= 1
optim_kwargs = (optim_kwargs, optim_kwargs)
end
delete!(paramdict, :betas)
# Cannot serialize empty NamedTuple, so substitute it with a normal one.
if isempty(paramdict[:optimizer_kwargs])
paramdict[:optimizer_kwargs] = ()
end
end
use_bson = Val(params.use_bson)
if d_model isa AbstractString
paramdict[:d_modelpath] = d_model
(d_model, d_optim, d_trainlosses_real, d_trainlosses_fake, d_testlosses,
d_steps) = load_d_cp(d_model, use_bson)
else
if d_optimtype === Flux.ADAM
d_optim = d_optimtype(lr[1], betas[1])
else
d_optim = d_optimtype(lr[1], optim_args[1]...; optim_kwargs[1]...)
end
d_trainlosses_real = Float32[]
d_trainlosses_fake = eltype(d_trainlosses_real)[]
d_testlosses = eltype(d_trainlosses_real)[]
d_steps = UInt64(0)
end
paramdict[:d_modelparams] = Dict{Symbol, Any}(k => v isa Function ? Symbol(v) : v
for (k, v) in d_model.hyperparams)
local testfakes
if g_model isa AbstractString
paramdict[:g_modelpath] = g_model
(g_model, g_optim, g_trainlosses, testfakes, const_noise, past_steps) = load_g_cp(
g_model, use_bson)
generator_inputsize = g_model.hyperparams[:inputsize]
else
if g_optimtype === Flux.ADAM
g_optim = g_optimtype(lr[2], betas[2])
else
g_optim = g_optimtype(lr[2], optim_args[2]...; optim_kwargs[2]...)
end
generator_inputsize = g_model.hyperparams[:inputsize]
g_trainlosses = eltype(d_trainlosses_real)[]
if g_model.hyperparams[:dimensionality] === Symbol("1d")
const_noise = togpu(randn(1, generator_inputsize,
params.const_noise_batch_size))
else
const_noise = togpu(randn(1, 1, generator_inputsize,
params.const_noise_batch_size))
end
past_steps = d_steps
end
paramdict[:g_modelparams] = Dict{Symbol, Any}(k => v isa Function ? Symbol(v) : v
for (k, v) in g_model.hyperparams)
meta_steps = UInt64(0)
if !isnothing(meta_model)
if meta_model isa AbstractString
paramdict[:meta_modelpath] = meta_model
(meta_model, meta_optim, meta_trainlosses, meta_meanlosses,
meta_varlosses, meta_steps) = load_meta_cp(meta_model, use_bson)
else
meta_optim = Flux.ADAM(params.meta_lr)
meta_trainlosses = eltype(d_trainlosses_real)[]
meta_meanlosses = eltype(meta_trainlosses)[]
meta_varlosses = eltype(meta_trainlosses)[]
end
meta_loss = makeloss(meta_model, params.meta_criterion)
meta_params = Flux.params(meta_model)
maxmeanloss = typemin(eltype(meta_trainlosses))
maxvarloss = typemin(eltype(meta_trainlosses))
paramdict[:meta_modelparams] = Dict{Symbol, Any}(
k => v isa Function ? Symbol(v) : v for (k, v) in meta_model.hyperparams)
end
epochs = params.epochs
batch_size = params.batch_size
d_warmup_steps = params.d_warmup_steps
d_steps_per_g_step = params.d_steps_per_g_step
logdir = params.logdir
logevery = params.logevery
saveevery = params.saveevery
max_d_loss = typemin(eltype(d_trainlosses_real))
max_d_testloss = typemin(eltype(d_testlosses))
max_g_loss = typemin(eltype(g_trainlosses))
maxvarlossdigits = 0 # Predefined in case `varloss` is NaN.
local g_l
local max_d_lossdigits
local max_d_testlossdigits
local max_g_lossdigits
local maxmeanlossdigits
const_fake_target = togpu(zeros(size(const_noise)[end]))
steps = UInt64(0)
trainiter = gan_dataiterator(db, params.buffer_size, trainindices, batch_size,
params.dataiter_threads)
testiter = gan_dataiterator(db, params.buffer_size, testindices, batch_size,
params.dataiter_threads)
curr_batch_size = 0
curr_batch_size_changed = false
local real_target
local fake_target
d_loss = makeloss(d_model, params.criterion)
g_loss = makeloss(g_model, d_model, params.criterion)
d_params = Flux.params(d_model)
g_params = Flux.params(g_model)
earlystoppingthreshold = params.earlystoppingthreshold
earlystoppingthreshold < 1 && (earlystoppingthreshold += 1)
earlystoppingwaitepochs = params.earlystoppingwaitepochs
mkpath(logdir)
# Save parameters
open(joinpath(logdir, params.params_logfile), "w") do io
JSON.print(io, paramdict, 4)
end
# Free `paramdict`
paramdict = nothing
log_io = open(joinpath(logdir, params.logfile), "a")
@fastmath try
logger = SimpleLogger(log_io)
tblogger = TBLogger(joinpath(logdir, "tensorboard"), min_level=Info)
d_steps > 0 && logprint(logger, "Loaded discriminator with $d_steps steps.")
meta_steps > 0 && logprint(logger, "Loaded meta predictor with $meta_steps steps.")
# To get local time instead of UTC for printing and filenames:
starttimestr = replace(string(now()), ':' => '-')
starttime = time()
logprint(logger, "Starting GAN training at $starttimestr for $epochs epochs. "
* "Seed: $(params.seed).")
testfake = Flux.data(g_model(const_noise))
if past_steps == 0
testfakes = [tocpu(testfake)]
else
push!(testfakes, tocpu(testfake))
end
testloss = testmodel(d_model, d_loss, testfake, const_fake_target)
if past_steps > 0
@tblog tblogger log_step_increment=convert(Int, past_steps)
pop!(testfakes)
end
if d_steps == 0
@tblog tblogger d_testloss=testloss log_step_increment=0
push!(d_testlosses, testloss)
end
if !isnothing(meta_model)
testlosses = testmodel(meta_model, testiter, testindices, batch_size, meta_loss)
meanloss = mean(testlosses)
varloss = var(testlosses, mean=meanloss)
if meta_steps == 0
@tblog(tblogger, meta_predictor_meanloss=meanloss,
meta_predictor_varloss=varloss, log_step_increment=0)
push!(meta_meanlosses, meanloss)
push!(meta_varlosses, varloss)
end
end
timediff = time() - starttime
if !isnothing(meta_model)
logprint(logger, "Initial discriminator test loss: "
* "$(@sprintf("%.4f", testloss)); metamodel mean test loss: "
* "$(@sprintf("%.4f", meanloss)) "
* "(variance: $(@sprintf("%.3f", varloss))); "
* "total time: $(@sprintf("%.2f", timediff / 60)) min.")
else
logprint(logger, "Initial discriminator test loss: "
* "$(@sprintf("%.4f", testloss)); "
* "total time: $(@sprintf("%.2f", timediff / 60)) min.")
end
for epoch in 1:epochs
for (i, j) in zip(1:cld(length(trainindices), batch_size),
Iterators.countfrom(1, batch_size))
if steps < past_steps
take!(trainiter)
steps += 1
continue
end
real_batch, meta_batch = map(togpu, take!(trainiter))
curr_batch_size_changed && (curr_batch_size_changed = false)
curr_batch_size == size(meta_batch, 2) || (curr_batch_size_changed = true)
curr_batch_size = size(meta_batch, 2)
# Only generate these anew if necessary.
if curr_batch_size_changed
real_target = togpu(ones(curr_batch_size))
fake_target = togpu(zeros(curr_batch_size))
end
# Discriminator
d_l = d_training_step!(d_model, d_params, d_optim, d_loss,
real_batch, real_target, g_model,
fake_target, curr_batch_size,
d_trainlosses_real,
d_trainlosses_fake, tblogger)
# Generator
if steps % d_steps_per_g_step == 0 && (steps > d_warmup_steps || steps == 0)
g_l = g_training_step!(g_model, g_params, g_optim, g_loss, real_target,
curr_batch_size, g_trainlosses, tblogger)
end
# Metadata predictor
if !isnothing(meta_model) && (overfit_on_batch || j > length(testindices))
meta_training_step!(meta_model, meta_params, meta_optim, meta_loss,
real_batch, meta_batch, meta_trainlosses, tblogger)
end
steps += 1
if logevery != 0 && steps % logevery == 0
testfake = Flux.data(g_model(const_noise))
push!(testfakes, tocpu(testfake))
testloss = testmodel(d_model, d_loss, testfake, const_fake_target)
@tblog tblogger d_testloss=testloss log_step_increment=0
if d_l > max_d_loss
max_d_loss = d_l
max_d_lossdigits = ndigits(trunc(Int, max_d_loss)) + 5
end
if testloss > max_d_testloss
max_d_testloss = testloss
max_d_testlossdigits = ndigits(trunc(Int, max_d_testloss)) + 5
end
if g_l > max_g_loss
max_g_loss = g_l
max_g_lossdigits = ndigits(trunc(Int, max_g_loss)) + 5
end
push!(d_testlosses, testloss)
if length(d_testlosses) > 1
lossdiff = testloss - d_testlosses[end - 1]
lossratio = testloss / d_testlosses[end - 1]
else
lossdiff = 0
end
if !isnothing(meta_model)
testlosses = testmodel(meta_model, testiter, testindices,
batch_size, meta_loss)
meanloss = mean(testlosses)
varloss = var(testlosses, mean=meanloss)
@tblog(tblogger, meta_predictor_meanloss=meanloss,
meta_predictor_varloss=varloss, log_step_increment=0)
if meanloss > maxmeanloss
maxmeanloss = meanloss
maxmeanlossdigits = ndigits(trunc(Int, maxmeanloss)) + 5
end
if varloss > maxvarloss
maxvarloss = varloss
maxvarlossdigits = ndigits(trunc(Int, maxvarloss)) + 4
end
push!(meta_meanlosses, meanloss)
push!(meta_varlosses, varloss)
end
timediff = time() - starttime
logprint(logger, "Epoch $(lpad(epoch, ndigits(epochs))) / "
* "$epochs; sequence "
* "$(lpad(j, ndigits(length(trainindices)))) / "
* "$(length(trainindices)); discriminator loss: "
* "$(lpad(@sprintf("%.4f", testloss), max_d_testlossdigits)) "
* "test, $(lpad(@sprintf("%.4f", d_l), max_d_lossdigits)) "
* "train; generator loss: "
* "$(lpad(@sprintf("%.4f", g_l), max_g_lossdigits)); "
* "mean time per step: "
* "$(@sprintf("%.3f", timediff / steps)) s; "
* "total time: $(@sprintf("%.2f", timediff / 60)) min.")
if !isnothing(meta_model)
logprint(logger, "Metamodel mean test loss: "
* "$(lpad(@sprintf("%.4f", meanloss), maxmeanlossdigits)) "
* "(variance: "
* "$(lpad(@sprintf("%.3f", varloss), maxvarlossdigits))).")
end
# Early stopping
if (epoch > earlystoppingwaitepochs && lossdiff > 0
&& lossratio >= earlystoppingthreshold)
save_d_cp(d_model, d_optim, d_trainlosses_real, d_trainlosses_fake,
d_testlosses, steps, logdir, starttimestr, use_bson)
save_g_cp(g_model, g_optim, g_trainlosses, testfakes, const_noise,
steps, testloss, logdir, starttimestr, use_bson)
if !isnothing(meta_model)
save_meta_cp(meta_model, meta_optim, meta_trainlosses,
meta_meanlosses, meta_varlosses, steps,
logdir, starttimestr, use_bson)
end
logprint(logger, "Early stopping activated after $steps training "
* "steps ($epoch epochs, $j sequences in current epoch). "
* "Loss increase: $testloss - $(d_testlosses[end - 1]) = "
* "$(round(lossdiff, digits=3)) "
* "($(round((lossratio - 1) * 100, digits=2)) %). "
* "Total time: $(round(timediff / 60, digits=2)) min.")
cleanupall(trainiter, testiter, log_io)
return (d_model, g_model, d_trainlosses_real,
d_trainlosses_fake, d_testlosses, g_trainlosses, testfakes,
db, trainindices, const_noise)
end
end
if saveevery != 0 && steps % saveevery == 0
if logevery != 0 && steps % logevery != 0
testfake = Flux.data(g_model(const_noise))
push!(testfakes, tocpu(testfake))
testloss = testmodel(d_model, d_loss, testfake,
const_fake_target)
@tblog tblogger d_testloss=testloss log_step_increment=0
push!(d_testlosses, testloss)
if !isnothing(meta_model)
testlosses = testmodel(meta_model, testiter, testindices,
batch_size, meta_loss)
meanloss = mean(testlosses)
varloss = var(testlosses, mean=meanloss)
@tblog(tblogger, meta_predictor_meanloss=meanloss,
meta_predictor_varloss=varloss, log_step_increment=0)
push!(meta_meanlosses, meanloss)
push!(meta_varlosses, varloss)
end
end
save_d_cp(d_model, d_optim, d_trainlosses_real, d_trainlosses_fake,
d_testlosses, steps, logdir, starttimestr, use_bson)
save_g_cp(g_model, g_optim, g_trainlosses, testfakes, const_noise,
steps, testloss, logdir, starttimestr, use_bson)
if !isnothing(meta_model)
save_meta_cp(meta_model, meta_optim, meta_trainlosses,
meta_meanlosses, meta_varlosses, steps,
logdir, starttimestr, use_bson)
end
logprint(logger, "Saved checkpoints after $steps training steps.")
end
end
end
save_d_cp(d_model, d_optim, d_trainlosses_real, d_trainlosses_fake,
d_testlosses, steps, logdir, starttimestr, use_bson)
save_g_cp(g_model, g_optim, g_trainlosses, testfakes, const_noise,
steps, testloss, logdir, starttimestr, use_bson)
if !isnothing(meta_model)
save_meta_cp(meta_model, meta_optim, meta_trainlosses, meta_meanlosses,
meta_varlosses, steps, logdir, starttimestr, use_bson)
end
logprint(logger, "Training finished after $steps training steps and "
* "$(round((time() - starttime) / 60, digits=2)) minutes.")
finally
cleanupall(trainiter, testiter, log_io)
end
return (d_model, g_model, d_trainlosses_real, d_trainlosses_fake,
d_testlosses, g_trainlosses, testfakes, db, trainindices, const_noise)
end
function d_training_step!(d_model, d_params, d_optim, d_loss,
real_batch, real_target, g_model, fake_target, curr_batch_size,
d_trainlosses_real, d_trainlosses_fake, tblogger)
d_l, d_l_real, d_l_fake = map(Flux.data,
step!(d_model, d_params, d_optim, d_loss,
real_batch, real_target, g_model, fake_target,
curr_batch_size))
push!(d_trainlosses_real, d_l_real)
@tblog tblogger d_loss_real=d_l_real
push!(d_trainlosses_fake, d_l_fake)
@tblog tblogger d_loss_fake=d_l_fake log_step_increment=0
return d_l
end
function g_training_step!(g_model, g_params, g_optim, g_loss, real_target, curr_batch_size,
g_trainlosses, tblogger)
g_l = Flux.data(step!(g_model, g_params, g_optim, g_loss, real_target, curr_batch_size))
push!(g_trainlosses, g_l)
@tblog tblogger g_loss=g_l log_step_increment=0
return g_l
end
function meta_training_step!(meta_model, meta_params, meta_optim, meta_loss,
real_batch, meta_batch, meta_trainlosses, tblogger)
l = Flux.data(step!(meta_model, meta_params, meta_optim, meta_loss,
real_batch, meta_batch))
push!(meta_trainlosses, l)
@tblog tblogger trainloss=l log_step_increment=0
return l
end
function testmodel(d_model, d_loss, fake_batch, const_fake_target)
Flux.testmode!(d_model)
d_l = Flux.data(calculate_loss(d_model, d_loss, fake_batch, const_fake_target))
Flux.testmode!(d_model, false)
return d_l
end
function testmodel(meta_model, testiter, testindices, batch_size, meta_loss)
Flux.testmode!(meta_model)
testlosses = Float32[]
for i in 1:cld(length(testindices), batch_size)
real_batch, meta_batch = map(togpu, take!(testiter))
l = Flux.data(calculate_loss(meta_model, meta_loss, real_batch, meta_batch))
push!(testlosses, l)
end
Flux.testmode!(meta_model, false)
return testlosses
end
# Numbered Vararg so we can make sure we didn't miss one without having to list them all.
cleanupall(args::Vararg{Any, 3}) = foreach(cleanup, args)
function save_d_cp(d_model, d_optim, d_trainlosses_real, d_trainlosses_fake, d_testlosses,
steps, logdir, starttimestr, use_bson::Val{true})
bson(joinpath(logdir, "discriminator-cp_$steps-steps_loss-"
* "$(d_testlosses[end])_$starttimestr.bson"),
d_model=tocpu(d_model), d_optim=tocpu(d_optim),
d_trainlosses_real=d_trainlosses_real,
d_trainlosses_fake=d_trainlosses_fake,
d_testlosses=d_testlosses, steps=steps)
end
function save_d_cp(d_model, d_optim, d_trainlosses_real, d_trainlosses_fake, d_testlosses,
steps, logdir, starttimestr, use_bson::Val{false})
# We use this signature so we don't use `mmap`, trading speed for stability.
# See https://github.com/JuliaIO/JLD2.jl/issues/55
jldopen(joinpath(logdir, "discriminator-cp_$steps-steps_loss-"
* "$(d_testlosses[end])_$starttimestr.jld2"),
true, true, true, IOStream, compress=true) do io
# addrequire(io, :Flux)
write(io, "d_model", tocpu(d_model))
write(io, "d_optim", tocpu(d_optim))
write(io, "d_trainlosses_real", d_trainlosses_real)
write(io, "d_trainlosses_fake", d_trainlosses_fake)
write(io, "d_testlosses", d_testlosses)
write(io, "steps", steps)
end
end
function save_g_cp(g_model, g_optim, g_trainlosses, testfakes, const_noise,
steps, testloss, logdir, starttimestr, use_bson::Val{true})
bson(joinpath(logdir, "generator-cp_$steps-steps_d-loss-$(testloss)_"
* "$starttimestr.bson"),
g_model=tocpu(g_model), g_optim=tocpu(g_optim),
g_trainlosses=g_trainlosses, testfakes=testfakes,
const_noise=tocpu(const_noise), steps=steps)
end
function save_g_cp(g_model, g_optim, g_trainlosses, testfakes, const_noise,
steps, testloss, logdir, starttimestr, use_bson::Val{false})
# We use this signature so we don't use `mmap`, trading speed for stability.
# See https://github.com/JuliaIO/JLD2.jl/issues/55
jldopen(joinpath(logdir, "generator-cp_$steps-steps_d-loss-$(testloss)_"
* "$starttimestr.jld2"), true, true, true, IOStream,
compress=true) do io
# addrequire(io, :Flux)
write(io, "g_model", tocpu(g_model))
write(io, "g_optim", tocpu(g_optim))
write(io, "g_trainlosses", g_trainlosses)
write(io, "testfakes", testfakes)
write(io, "const_noise", tocpu(const_noise))
write(io, "steps", steps)
end
end
function load_d_cp(cppath::AbstractString, use_bson::Val{true})
cp = BSON.load(cppath)
load_d_cp(cp, Symbol)
end
function load_d_cp(cppath::AbstractString, use_bson::Val{false})
jldopen(cppath) do cp
load_d_cp(cp, String)
end
end
function load_d_cp(cp, cpkeytype::Type)
d_model = togpu(cp[cpkeytype("d_model")]::Flux.Chain)
d_optim = togpu(cp[cpkeytype("d_optim")])
d_trainlosses_real::Vector{Float32} = cp[cpkeytype("d_trainlosses_real")]
d_trainlosses_fake::Vector{eltype(d_trainlosses_real)} = cp[
cpkeytype("d_trainlosses_fake")]
d_testlosses::Vector{eltype(d_trainlosses_real)} = cp[cpkeytype("d_testlosses")]
steps::UInt64 = cp[cpkeytype("steps")]
return (d_model, d_optim, d_trainlosses_real, d_trainlosses_fake, d_testlosses, steps)
end
function load_g_cp(cppath::AbstractString, use_bson::Val{true})
cp = BSON.load(cppath)
load_g_cp(cp, Symbol)
end
function load_g_cp(cppath::AbstractString, use_bson::Val{false})
jldopen(cppath) do cp
load_g_cp(cp, String)
end
end
function load_g_cp(cp, cpkeytype::Type)
g_model = togpu(cp[cpkeytype("g_model")]::Flux.Chain)
g_optim = togpu(cp[cpkeytype("g_optim")])
g_trainlosses::Vector{Float32} = cp[cpkeytype("g_trainlosses")]
testfakes::Vector = cp[cpkeytype("testfakes")]
const_noise::AbstractArray = togpu(cp[cpkeytype("const_noise")])
steps::UInt64 = cp[cpkeytype("steps")]
return (g_model, g_optim, g_trainlosses, testfakes, const_noise, steps)
end
function save_meta_cp(meta_model, meta_optim, meta_trainlosses, meta_meanlosses,
meta_varlosses, steps, logdir, starttimestr, use_bson::Val{true})
# TODO Due to having to use a different BSON PR branch, this fails.
# When the branch is merged, update the package and remove the try-catch.
try
bson(joinpath(logdir, "meta-cp_$steps-steps_loss-"
* "$(meta_trainlosses[end])_$starttimestr.bson"),
meta_model=tocpu(meta_model), meta_optim=tocpu(meta_optim),
meta_trainlosses=meta_trainlosses,
meta_meanlosses=meta_meanlosses,
meta_varlosses=meta_varlosses, steps=steps)
catch e
bson(joinpath(logdir, "meta-cp_$steps-steps_loss-"
* "$(meta_trainlosses[end])_$starttimestr.bson"),
meta_model=tocpu(meta_model), meta_optim=nothing,
meta_trainlosses=meta_trainlosses,
meta_meanlosses=meta_meanlosses,
meta_varlosses=meta_varlosses, steps=steps)
end
end
function save_meta_cp(meta_model, meta_optim, meta_trainlosses, meta_meanlosses,
meta_varlosses, steps, logdir, starttimestr, use_bson::Val{false})
# TODO Due to having to use a different BSON PR branch, this fails.
# When the branch is merged, update the package and remove the try-catch.
# We use this signature so we don't use `mmap`, trading speed for stability.
# See https://github.com/JuliaIO/JLD2.jl/issues/55
jldopen(joinpath(logdir, "meta-cp_$steps-steps_loss-"
* "$(meta_trainlosses[end])_$starttimestr.jld2"),
true, true, true, IOStream, compress=true) do io
# addrequire(io, :Flux)
write(io, "meta_model", tocpu(meta_model))
write(io, "meta_optim", tocpu(meta_optim))
write(io, "meta_trainlosses", meta_trainlosses)
write(io, "meta_meanlosses", meta_meanlosses)
write(io, "meta_varlosses", meta_varlosses)
write(io, "steps", steps)
end
end
function load_meta_cp(cppath::AbstractString, use_bson::Val{true})
cp = BSON.load(cppath)
load_meta_cp(cp, Symbol)
end
function load_meta_cp(cppath::AbstractString, use_bson::Val{false})
jldopen(cppath) do cp
load_meta_cp(cp, String)
end
end
function load_meta_cp(cp, cpkeytype::Type)
meta_model = togpu(cp[cpkeytype("meta_model")]::Flux.Chain)
meta_optim::Flux.ADAM = togpu(cp[cpkeytype("meta_optim")])
meta_trainlosses::Vector{Float32} = cp[cpkeytype("meta_trainlosses")]
meta_meanlosses::Vector{eltype(meta_trainlosses)} = cp[cpkeytype("meta_meanlosses")]
meta_varlosses::Vector{eltype(meta_trainlosses)} = cp[cpkeytype("meta_varlosses")]
meta_steps::UInt64 = cp[cpkeytype("steps")]
return (meta_model, meta_optim, meta_trainlosses,
meta_meanlosses, meta_varlosses, meta_steps)
end
end # module