-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpotera-single-video.py
381 lines (297 loc) · 14.4 KB
/
potera-single-video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from time import sleep
import cv2
import numpy
import sys
import easyocr
from datetime import datetime
import csv
import os.path
import ffmpeg # https://github.com/deezer/spleeter/issues/101#issuecomment-554627345
import argparse
defaultFileName = "potjera-isecena.mp4"
# Arguments
parser = argparse.ArgumentParser(description="Potera single video processor",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-srcdir", "--srcDirectory", help="directory where file is located", default="examples/potera")
parser.add_argument("-file", "--fileName", help="video file name to be processed", default=defaultFileName)
parser.add_argument("-o", "--output", help="directory for csv and debug data output", default="results")
parser.add_argument("-lang", "--language", help="ocr language, can be either rs_latin or rs_cyrillic", default="rs_cyrillic")
parser.add_argument("-csv", "--csvFileName", help="name for csv file", default="questions.csv")
parser.add_argument("-d", "--debugData", help="create frame image files for every image processed. note: can use up a lot of data space!", default="True")
args = parser.parse_args()
config = vars(args)
# Configuration ################################################################
srcDir = config['srcDirectory']
fileName = config['fileName']
filePath = "%s/%s" %(srcDir, config['fileName'])
directoryOutput = config['output']
csvFileName = config['csvFileName']
createDebugData = (config['debugData'] == 'True')
# OCR language (either latin or cyrillic, cannot do both at the same time)
ocrLanguage = config['language']
# Found contours area size treshold
percentageOfAreaThreshold = 0.0035
# Contours scale config
blueMaskScale = 1.01
greenMaskScale = 1.01
# Add height in px (up and down equally) for masks (applied during generation of cropped image, not visible on contour)
blueMaskHeightExpansion = 5
blueMaskWidthExpansion = 0
greenMaskHeightExpansion = 10
greenMaskWidthExpansion = 0
# HSV masks values
green_l_h = 31
green_l_s = 23
green_l_v = 0
green_u_h = 84
green_u_s = 255
green_u_v = 255
blue_l_h = 100
blue_l_s = 118
blue_l_v = 42
blue_u_h = 120
blue_u_s = 255
blue_u_v = 210
# When answer/question are found, jump frames in order to avoid multiple detection of the same question
# This can be done smarter, but this simple jump works just fine
howManyGreenFramesToJumpPrelod = 5
howManyFramesToJumpAfterSuccess = 350
frameIterationStepModifier = 1
# CSV config
csvResultsFileLocation = "%s/%s" %(directoryOutput, csvFileName)
csvLogFileLocation = "%s/log-%s" %(directoryOutput, csvFileName)
csvDelimeter = ';'
csvResultsHeaders = ['question', 'answer', 'video_bitrate', 'resolution_height', 'resolution_width', 'filename', 'frameNumber']
csvLogHeaders = ['filename', 'found_questions_answers', 'fps', 'iteration_step', 'processing_duration']
# End of configuration ##############################################################################
def print_progress_bar(index, total, label, endlabel):
n_bar = 50 # Progress bar width
progress = index / total
sys.stdout.write('\r')
sys.stdout.write(f"[{'=' * int(n_bar * progress):{n_bar}s}] {int(100 * progress)}% {label} {index}/{total} {endlabel}")
sys.stdout.flush()
def get_bitrate(file):
probe = ffmpeg.probe(file)
video_bitrate = next(s for s in probe['streams'] if s['codec_type'] == 'video')
bitrate = int(int(video_bitrate['bit_rate']) / 1000)
return bitrate
def get_fps(file):
probe = ffmpeg.probe(file)
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
fps_first_part = int(video_info['r_frame_rate'].split('/')[0])
fps_second_part = int(video_info['r_frame_rate'].split('/')[1])
fps = int(fps_first_part / fps_second_part)
return fps
def listToString(s):
str1 = " "
return (str1.join(s))
def scale_contour(cnt, scale):
if scale == 1.0:
return cnt
M = cv2.moments(cnt)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
cnt_norm = cnt - [cx, cy]
cnt_scaled = cnt_norm * scale
cnt_scaled = cnt_scaled + [cx, cy]
cnt_scaled = cnt_scaled.astype(numpy.int32)
return cnt_scaled
def areAllPointsInsideSeekBorderArea(contour, seekAreaBorderHorizontalY, seekAreaBorderVerticalXLeft, seekAreaBorderVerticalXRight):
result = True
n = contour.ravel()
i = 0
for j in n :
if(i % 2 == 0):
x = n[i]
y = n[i + 1]
if y < seekAreaBorderHorizontalY or x < seekAreaBorderVerticalXLeft or x > seekAreaBorderVerticalXRight:
result = False
break
i = i + 1
return result
def calculateMinMaxPoints(imageHeight, imageWidth, contour):
n = contour.ravel()
i = 0
ymin = imageHeight
ymax = 0
xmin = imageWidth
xmax = 0
for j in n :
if(i % 2 == 0):
x = n[i]
y = n[i + 1]
if y < ymin:
ymin = y
if y > ymax:
ymax = y
if x < xmin:
xmin = x
if x > xmax:
xmax = x
i = i + 1
return ymin,ymax,xmin,xmax
############### Start of processing
start_time = datetime.now()
print("Single video file processing started of %s..." %filePath)
if not os.path.isdir(srcDir):
print('Incorrect srcDirectory: \"%s\" Does directory exist?' %srcDir)
print('Skipping...')
sys.exit(1)
if not os.path.isdir(directoryOutput):
print('Incorrect output directory: \"%s\" Does directory exist?' %directoryOutput)
print('Skipping...')
sys.exit(1)
if not os.path.isfile(filePath):
print('File path is incorrect: \"%s\" Does file exist?' %filePath)
print('Skipping...')
sys.exit(1)
# Load EasyOCR trained models (en is fallback)
reader = easyocr.Reader(['en', ocrLanguage], gpu=False)
# Initialize csv if not exist
if not os.path.isfile(csvResultsFileLocation):
with open(csvResultsFileLocation, 'a+', encoding='UTF8', newline='') as f:
writer = csv.writer(f, delimiter =';')
writer.writerow(csvResultsHeaders)
if not os.path.isfile(csvLogFileLocation):
with open(csvLogFileLocation, 'a+', encoding='UTF8', newline='') as f:
writer = csv.writer(f, delimiter =';')
writer.writerow(csvLogHeaders)
# Load up video and obtain first frame
videoFile = cv2.VideoCapture(filePath)
success,originalFrame = videoFile.read()
videoFileFramesTotalLength = int(videoFile.get(cv2.CAP_PROP_FRAME_COUNT))
# Create seek area (a lot easier to find shapes and avoid false detections on unimportant parts of the image)
imageHeight, imageWidth, _ = originalFrame.shape
seekAreaBorderHorizontalLineY = 2 * int(imageHeight/3)
seekAreaBorderHorizontalLineXStart = 0
seekAreaBorderHorizontalLineXEnd = imageWidth
seekAreaBorderLeftX = int(imageWidth/9.1)
seekAreaBorderLeftY = imageHeight
seekAreaBorderRightX = int(8.1 * int(imageWidth/9.1))
seekAreaBorderRightY = imageHeight
# Calculate area of found shapes tresholds
totalPixels = imageHeight * imageWidth
areaThreashold = percentageOfAreaThreshold * totalPixels
skipFirstGreenFoundMaskFrames = True
# Get video bitrate for debug purposes
bitrate = get_bitrate(filePath)
frameIndex = 0
videoAverageFps = get_fps(filePath)
print("FPS: %d" %videoAverageFps)
howManyFramesToIterateBy = int(frameIterationStepModifier * videoAverageFps)
print("Frame iteration step: %d" %howManyFramesToIterateBy)
numberOfFoundQuestionAnswerPair = 0
# Loop through all frames of the video
while success:
# Show preview of processing...
processingPreviewThumbnail = cv2.resize(originalFrame, (0, 0), fx=0.4, fy=0.4).copy()
cv2.imshow('Processing video...', processingPreviewThumbnail)
key = cv2.waitKey(1)
# Stats
currentTime = 'Time: {}'.format(datetime.now() - start_time)
print_progress_bar(frameIndex, videoFileFramesTotalLength, "Frames: ", currentTime)
hsvFrameImage = cv2.cvtColor(originalFrame, cv2.COLOR_BGR2HSV)
# Create HSV masks
green_lower_hsv = numpy.array([green_l_h, green_l_s, green_l_v])
green_upper_hsv = numpy.array([green_u_h, green_u_s, green_u_v])
green_mask = cv2.inRange(hsvFrameImage, green_lower_hsv, green_upper_hsv)
blue_lower_hsv = numpy.array([blue_l_h, blue_l_s, blue_l_v])
blue_upper_hsv = numpy.array([blue_u_h, blue_u_s, blue_u_v])
blue_mask = cv2.inRange(hsvFrameImage, blue_lower_hsv, blue_upper_hsv)
# Erode green mask
kernelGreen = numpy.ones((5,5), numpy.uint8)
green_mask = cv2.erode(green_mask, kernelGreen)
# Erode blue mask
kernelBlue = numpy.ones((5,5), numpy.uint8)
blue_mask = cv2.erode(blue_mask, kernelBlue)
# Find contours in masked images
contoursInGreenMask, _ = cv2.findContours(green_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contoursInBlueMask, _ = cv2.findContours(blue_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Magic!
maxGreenArea = 0
maxGreenAreaContour = None
maxGreenAreaContourApprox = None
green_ymin, green_ymax, green_xmin, green_xmax = None, None, None, None
for cnt in contoursInGreenMask:
area = cv2.contourArea(cnt)
approx = cv2.approxPolyDP(cnt, 0.02 * cv2.arcLength(cnt, True), True)
numberOfPoints = len(approx)
if area > maxGreenArea and numberOfPoints >= 4 and numberOfPoints <= 4 and area > areaThreashold and areAllPointsInsideSeekBorderArea(approx, seekAreaBorderHorizontalLineY, seekAreaBorderLeftX, seekAreaBorderRightX):
green_ymin, green_ymax, green_xmin, green_xmax = calculateMinMaxPoints(imageHeight, imageWidth, approx)
maxGreenArea = area
maxGreenAreaContour = scale_contour(cnt, greenMaskScale)
maxGreenAreaContourApprox = scale_contour(approx, greenMaskScale)
maxBlueArea = 0
maxBlueAreaContour = None
maxBlueAreaContourApprox = None
blue_ymin, blue_ymax, blue_xmin, blue_xmax = None, None, None, None
for cnt in contoursInBlueMask:
area = cv2.contourArea(cnt)
approx = cv2.approxPolyDP(cnt, 0.02 * cv2.arcLength(cnt, True), True)
numberOfPoints = len(approx)
if area > maxBlueArea and numberOfPoints >= 4 and numberOfPoints <= 6 and area > areaThreashold and area > 3 * maxGreenArea and areAllPointsInsideSeekBorderArea(approx, seekAreaBorderHorizontalLineY, seekAreaBorderLeftX, seekAreaBorderRightX):
blue_ymin, blue_ymax, blue_xmin, blue_xmax = calculateMinMaxPoints(imageHeight, imageWidth, approx)
maxBlueArea = area
maxBlueAreaContour = scale_contour(cnt, blueMaskScale)
maxBlueAreaContourApprox = scale_contour(approx, blueMaskScale)
# Answer and question are found!
if maxGreenArea > 0 and maxBlueArea > 0:
if skipFirstGreenFoundMaskFrames:
frameIndex += howManyGreenFramesToJumpPrelod
videoFile.set(cv2.CAP_PROP_POS_FRAMES, frameIndex)
skipFirstGreenFoundMaskFrames = False
success,originalFrame = videoFile.read()
continue
else:
blue_ymin = blue_ymin - blueMaskHeightExpansion
blue_ymax = blue_ymax + blueMaskHeightExpansion
green_ymin = green_ymin - blueMaskHeightExpansion
green_ymax = green_ymax + blueMaskHeightExpansion
blue_xmin = blue_xmin - blueMaskWidthExpansion
blue_xmax = blue_xmax + blueMaskWidthExpansion
green_xmin = green_xmin - greenMaskWidthExpansion
green_xmax = green_xmax + greenMaskWidthExpansion
questionRectangleImage = originalFrame[blue_ymin:blue_ymax, blue_xmin:blue_xmax]
answerRectangleImage = originalFrame[green_ymin:green_ymax, green_xmin:green_xmax]
if createDebugData:
cv2.imwrite("results/%s-%d-0-frame.jpg" % (fileName, frameIndex), originalFrame)
debugCopy = originalFrame.copy()
cv2.drawContours(debugCopy, [maxGreenAreaContourApprox], 0, (0, 255, 0), 3)
cv2.drawContours(debugCopy, [maxBlueAreaContourApprox], 0, (255, 0, 0), 3)
debugFrameName = "%s/%s-%d-1-frame-contours.jpg" % (directoryOutput, fileName, frameIndex)
cv2.imwrite(debugFrameName, debugCopy)
debugFrameName = "%s/%s-%d-2-question.jpg" % (directoryOutput, fileName, frameIndex)
cv2.imwrite(debugFrameName, questionRectangleImage)
debugFrameName = "%s/%s-%d-3-answer.jpg" % (directoryOutput, fileName, frameIndex)
cv2.imwrite(debugFrameName, answerRectangleImage)
ocrQuestionList = reader.readtext(questionRectangleImage, detail = 0, paragraph=True)
ocrQuestion = listToString(ocrQuestionList)
ocrAnswerList = reader.readtext(answerRectangleImage, detail = 0, paragraph=True)
ocrAnswer = listToString(ocrAnswerList)
print('\nQuestion: %s' %ocrQuestion)
print('Answer: %s' %ocrAnswer)
numberOfFoundQuestionAnswerPair += 1
with open(csvResultsFileLocation, 'a+', encoding='UTF8', newline='') as f:
writer = csv.writer(f, delimiter =';')
csvDataRow = [ocrQuestion, ocrAnswer, bitrate, imageHeight, imageWidth, filePath, frameIndex]
writer.writerow(csvDataRow)
# https://subscription.packtpub.com/book/application-development/9781788474443/1/ch01lvl1sec15/jumping-between-frames-in-video-files
frameIndex += howManyFramesToJumpAfterSuccess
print("Jump to %dth frame of %d" %(frameIndex, videoFileFramesTotalLength))
if frameIndex >= videoFileFramesTotalLength:
print("No more frames to process after frame jump...")
videoFile.set(cv2.CAP_PROP_POS_FRAMES, frameIndex)
skipFirstGreenFoundMaskFrames = True
# Read new frame and continue with the loop
frameIndex += howManyFramesToIterateBy
videoFile.set(cv2.CAP_PROP_POS_FRAMES, frameIndex)
success,originalFrame = videoFile.read()
end_time = datetime.now()
print('\nFound: %d question/answer frames' %numberOfFoundQuestionAnswerPair)
duration = format(end_time - start_time)
print('Duration: {}'.format(end_time - start_time))
print("Finished processing of %s." %filePath)
with open(csvLogFileLocation, 'a+', encoding='UTF8', newline='') as f:
writer = csv.writer(f, delimiter =';')
csvDataRow = [filePath, numberOfFoundQuestionAnswerPair, videoAverageFps, howManyFramesToIterateBy, duration]
writer.writerow(csvDataRow)