-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
453 lines (388 loc) · 21.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from __future__ import print_function, division
import abc, sys
import collections
import torch_geometric
from torch_geometric.data import Data, Dataset
import pathlib
import persim
import ripser
import MDAnalysis as mda
import argparse
from typing import *
import functools
import itertools
import functools
import numpy as np
import time
import ray
import os
import pickle
import collections
import warnings
import curtsies.fmtfuncs as cf
import tqdm
import pymatgen as pg
from pymatgen.core import Structure
import dataclasses
import torch
from torch.utils.data.dataloader import default_collate
from torch.utils.data.sampler import SubsetRandomSampler
from torch_geometric.loader import DataLoader #Can this handle DDP? yeah!
import torch.distributed as dist
from dist_utils import to_cuda, get_local_rank, init_distributed, seed_everything, \
using_tensor_cores, increase_l2_fetch_granularity
from torch.utils.data import DistributedSampler
from typing import *
# from topologylayer.nn import RipsLayer, AlphaLayer
import gc
from MDAnalysis.analysis.base import AnalysisFromFunction
from MDAnalysis.analysis.align import AlignTraj
from MDAnalysis import transformations
import data_utils
# import data_utils_mem
from dist_utils import to_cuda, get_local_rank, init_distributed, seed_everything, \
using_tensor_cores, increase_l2_fetch_granularity, WandbLogger
from train_utils import train as train_function
# from kd_train_utils import train as distill_train_function
from model import MPNN, Vision
from gpu_utils import *
from loss_utils import * #TEMP_RANGES
from test_utils import compute_statistics, validate_and_test, InferenceDataset
from interpret_utils import xai
from math_utils import wasserstein_difference
from train_utils import load_state, single_val, single_test
from visual_utils import plot_total_temps, plot_one_temp_parallel
import gc
def get_args():
parser = argparse.ArgumentParser()
#Directories
parser.add_argument('--data_dir', type=str, default="/Scr/hyunpark/Monster/vaegan_md_gitlab/data", help="DEPRECATED!")
parser.add_argument('--save_dir', type=str, default="/Scr/hyunpark-new/Memb-TDA/pickled_indiv/")
parser.add_argument('--load_ckpt_path', type=str, default="/Scr/hyunpark-new/Memb-TDA/saved")
parser.add_argument('--filename', type=str, default="dppc.pickle")
parser.add_argument('--pdb_database', type=str, default="/Scr/arango/Sobolev-Hyun/2-MembTempredict/testing/")
parser.add_argument('--search_temp', default=123, help="e.g. keyword for T.123 directory")
parser.add_argument('--search_system', default="ABC", help="e.g. protein/lipid system name")
#MDAnalysis utils
parser.add_argument('--psf', type=str, default=None)
parser.add_argument('--pdb', type=str, default=None)
parser.add_argument('--last', type=int, default=200)
parser.add_argument('--trajs', default=None, nargs="*")
parser.add_argument('--atom_selection', type=str, default="backbone")
#PH utils
parser.add_argument('--maxdim', type=int, default=1)
parser.add_argument('--multiprocessing', action="store_true")
parser.add_argument('--multiprocessing_backend', type=str, default="ray", choices=["multiprocessing", "dask", "joblib", "ray"])
parser.add_argument('--tensor', action="store_true", help="DEPRECATED!")
parser.add_argument('--ripspp', action="store_true", help="Rips++!")
parser.add_argument('--gudhi', action="store_true", help="Gudhi!")
#Dataloader utils
parser.add_argument('--train_frac', type=float, default=0.8)
parser.add_argument('--pin_memory', type=bool, default=True)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--preprocessing_only', action="store_true", help="to get RIPSER based PH!")
parser.add_argument('--ignore_topologicallayer', action="store_true", help="forcefully use RIPSER for subscription!")
parser.add_argument('--truncated', action="store_true", help="Use only 10% of data. It MUST have original dataset, however.")
#Training utils
parser.add_argument('--epoches', type=int, default=2)
parser.add_argument('--label_smoothing', '-ls', type=float, default=0.)
parser.add_argument('--learning_rate','-lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=2e-5)
parser.add_argument('--warm_up_split', type=int, default=5)
parser.add_argument('--dropout', type=float, default=0)
# parser.add_argument('--distributed', action="store_true")
parser.add_argument('--low_memory', action="store_true")
parser.add_argument('--amp', action="store_true", help="floating 16 when turned on.")
parser.add_argument('--optimizer', type=str, default='adam', choices=["adam","lamb","sgd","torch_adam","torch_adamw","torch_sparse_adam"])
parser.add_argument('--scheduler', type=str, default='reduce', choices=["linear","reduce"])
parser.add_argument('--gradient_clip', type=float, default=None)
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
parser.add_argument('--resume', action='store_true')
parser.add_argument('--use_artifacts', action='store_true')
parser.add_argument('--gpu', action='store_true')
parser.add_argument('--shard', action='store_true')
parser.add_argument('--loss', choices=["mse", "mae", "smooth", "hybrid", "distill"], default="hybrid")
parser.add_argument('--ce_weights', nargs="*", default=[1]*TEMP_RANGES[2], type=float, help="CE weights for class")
parser.add_argument('--ce_re_ratio', nargs=2, default=[1., 1.], type=float, help="CE and Reg loss weights")
#Model utils
parser.add_argument('--backbone', type=str, default='vit', choices=["mpnn", "vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"])
#Callback utils
parser.add_argument('--log', action="store_true", help="to log for W&B")
parser.add_argument('--silent', action='store_true')
parser.add_argument('--name', type=str, default="mpnn", help="saved torch model name...")
parser.add_argument('--teacher_name', type=str, default="mpnn", help="saved torch model name...")
#Mode utils
parser.add_argument('--which_mode', type=str, choices=["preprocessing", "train", "distill", "infer", "infer_custom", "xai", "eff_temp", "ml_metrics"], default="preprocessing")
parser.add_argument('--which_xai', type=str, choices=["saliency", "gradcam", "lime", "attention"], default="saliency")
parser.add_argument('--confusion_thresh', nargs="*", default=[306, 310], type=float, help="threshold for classification")
args = parser.parse_args()
return args
def preprocessing(args):
ds = dutils.PH_Featurizer_Dataset(args)
print(ds[0], ds[5])
# dl = PH_Featurizer_DataLoader(opt=args)
# testset = dl.test_dataloader()
# print(iter(testset).next())
def job_submit(args):
#Initalize DDP
is_distributed = init_distributed() #normal python vs torchrun!
local_rank = get_local_rank()
#WARNING: Call dataloader & logger after initializing DDP
dl = dutils.PH_Featurizer_DataLoader(opt=args)
train_loader, val_loader, test_loader = [getattr(dl, key)() for key in ["train_dataloader", "val_dataloader", "test_dataloader"]]
print(cf.on_blue("STEP 1 of training: Loading data is done!"))
if args.backbone == "mpnn":
net = MPNN()
elif args.backbone in ["vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"]:
net = Vision(args)
if args.gpu:
net = net.to(torch.cuda.current_device())
if args.loss == "mse":
loss_func = torch.nn.MSELoss()
elif args.loss == "mae":
loss_func = torch.nn.L1Loss()
elif args.loss == "smooth":
loss_func = torch.nn.SmoothL1Loss()
elif args.loss == "hybrid":
# print(args.ce_re_ratio)
ce_re_ratio = torch.tensor(args.ce_re_ratio).to(torch.cuda.current_device()).float()
loss_func = lambda pred, targ: ce_re_ratio[0] * ce_loss(args, targ, pred) + ce_re_ratio[1] * reg_loss(args, targ, pred)
elif args.loss == "distill":
# print(args.ce_re_ratio)
ce_re_ratio = torch.tensor(args.ce_re_ratio).to(torch.cuda.current_device()).float()
loss_func = lambda pred, targ, teacher_pred, T, alpha: ce_re_ratio[0] * distillation_loss(args, targ, pred, teacher_pred, T, alpha) + ce_re_ratio[1] * reg_loss(args, targ, pred)
if args.log:
# https://docs.wandb.ai/guides/artifacts/storage
logger = WandbLogger(name=args.name, project="Memb-TDA", entity="hyunp2")
os.environ["WANDB_DIR"] = os.path.join(os.getcwd(), "wandb")
os.environ["WANDB_CACHE_DIR"] = os.path.join(os.getcwd(), ".cache/wandb")
os.environ["WANDB_CONFIG_DIR"] = os.path.join(os.getcwd(), ".config/wandb")
else:
logger = None
#Dist training
if is_distributed:
nproc_per_node = torch.cuda.device_count()
affinity = set_affinity(local_rank, nproc_per_node)
increase_l2_fetch_granularity()
print(cf.on_yellow("STEP 2 of training: Initalizing training..."))
train_function(net, loss_func, train_loader, val_loader, test_loader, logger, args)
#python -m main --which_mode train --ignore_topologicallayer
def job_submit_distill(args):
#Initalize DDP
is_distributed = init_distributed() #normal python vs torchrun!
local_rank = get_local_rank()
#WARNING: Call dataloader & logger after initializing DDP
dl = dutils.PH_Featurizer_DataLoader(opt=args)
train_loader, val_loader, test_loader = [getattr(dl, key)() for key in ["train_dataloader", "val_dataloader", "test_dataloader"]]
print(cf.on_blue("STEP 1 of training: Loading data is done!"))
if args.backbone == "mpnn":
net = MPNN()
elif args.backbone in ["vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"]:
student = net = Vision(args)
args.backbone = "convnext" #Force it...
teacher = Vision(args)
if args.gpu:
net = net.to(torch.cuda.current_device())
teacher = teacher.to(torch.cuda.current_device())
if args.loss == "mse":
loss_func = torch.nn.MSELoss()
elif args.loss == "mae":
loss_func = torch.nn.L1Loss()
elif args.loss == "smooth":
loss_func = torch.nn.SmoothL1Loss()
elif args.loss == "hybrid":
# print(args.ce_re_ratio)
ce_re_ratio = torch.tensor(args.ce_re_ratio).to(torch.cuda.current_device()).float()
loss_func = lambda pred, targ: ce_re_ratio[0] * ce_loss(args, targ, pred) + ce_re_ratio[1] * reg_loss(args, targ, pred)
elif args.loss == "distill":
# print(args.ce_re_ratio)
ce_re_ratio = torch.tensor(args.ce_re_ratio).to(torch.cuda.current_device()).float()
loss_func = lambda pred, targ, teacher_pred, T, alpha: ce_re_ratio[0] * distillation_loss(args, targ, pred, teacher_pred, T, alpha) + ce_re_ratio[1] * reg_loss(args, targ, pred)
assert args.loss == "distill", "For distillatin, distill loss must be chosen!"
if args.log:
# https://docs.wandb.ai/guides/artifacts/storage
logger = WandbLogger(name=args.name, project="Memb-TDA", entity="hyunp2")
os.environ["WANDB_DIR"] = os.path.join(os.getcwd(), "wandb")
os.environ["WANDB_CACHE_DIR"] = os.path.join(os.getcwd(), ".cache/wandb")
os.environ["WANDB_CONFIG_DIR"] = os.path.join(os.getcwd(), ".config/wandb")
else:
logger = None
#Dist training
if is_distributed:
nproc_per_node = torch.cuda.device_count()
affinity = set_affinity(local_rank, nproc_per_node)
increase_l2_fetch_granularity()
print(cf.on_yellow("STEP 2 of training: Initalizing training..."))
distill_train_function(net, teacher, loss_func, train_loader, val_loader, test_loader, logger, args)
#python -m main --which_mode train --ignore_topologicallayer
def infer_submit(args):
#Initalize DDP
is_distributed = init_distributed() #normal python vs torchrun!
local_rank = get_local_rank()
#WARNING: Call dataloader & logger after initializing DDP
dl = dutils.PH_Featurizer_DataLoader(opt=args)
train_loader, val_loader, test_loader = [getattr(dl, key)() for key in ["train_dataloader", "val_dataloader", "test_dataloader"]]
print(cf.on_blue("STEP 1 of validation and testing: Loading data is done!"))
if args.backbone == "mpnn":
net = MPNN()
elif args.backbone in ["vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"]:
net = Vision(args)
if args.gpu:
net = net.to(torch.cuda.current_device())
if args.loss == "mse":
loss_func = torch.nn.MSELoss()
elif args.loss == "mae":
loss_func = torch.nn.L1Loss()
elif args.loss == "smooth":
loss_func = torch.nn.SmoothL1Loss()
elif args.loss == "hybrid":
# print(args.ce_re_ratio)
ce_re_ratio = torch.tensor(args.ce_re_ratio).to(torch.cuda.current_device()).float()
loss_func = lambda pred, targ: ce_re_ratio[0] * ce_loss(args, targ, pred) + ce_re_ratio[1] * reg_loss(args, targ, pred)
elif args.loss == "distill":
# print(args.ce_re_ratio)
ce_re_ratio = torch.tensor(args.ce_re_ratio).to(torch.cuda.current_device()).float()
loss_func = lambda pred, targ, teacher_pred, T, alpha: ce_re_ratio[0] * distillation_loss(args, targ, pred, teacher_pred, T, alpha) + ce_re_ratio[1] * reg_loss(args, targ, pred)
# print(cf.red("Forcefully changeing loss function for evaluation to MAE..."))
# args.loss = "mae"
# loss_func = torch.nn.L1Loss()
if args.log:
# https://docs.wandb.ai/guides/artifacts/storage
logger = WandbLogger(name=args.name, project="Memb-TDA", entity="hyunp2")
os.environ["WANDB_DIR"] = os.path.join(os.getcwd(), "wandb")
os.environ["WANDB_CACHE_DIR"] = os.path.join(os.getcwd(), ".cache/wandb")
os.environ["WANDB_CONFIG_DIR"] = os.path.join(os.getcwd(), ".config/wandb")
else:
logger = None
#Dist training
if is_distributed:
nproc_per_node = torch.cuda.device_count()
affinity = set_affinity(local_rank, nproc_per_node)
increase_l2_fetch_granularity()
print(cf.on_yellow("STEP 2 of validation and testing: Initalizing validation and testing..."))
validate_and_test(net, loss_func, train_loader, val_loader, test_loader, logger, args)
def infer_for_customdata(args):
#Initalize DDP
is_distributed = init_distributed() #normal python vs torchrun!
local_rank = get_local_rank()
if args.backbone == "mpnn":
net = MPNN()
elif args.backbone in ["vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"]:
net = Vision(args)
if args.gpu:
net = net.to(torch.cuda.current_device())
if args.log:
# https://docs.wandb.ai/guides/artifacts/storage
logger = WandbLogger(name=args.name, project="Memb-TDA", entity="hyunp2")
os.environ["WANDB_DIR"] = os.path.join(os.getcwd(), "wandb")
os.environ["WANDB_CACHE_DIR"] = os.path.join(os.getcwd(), ".cache/wandb")
os.environ["WANDB_CONFIG_DIR"] = os.path.join(os.getcwd(), ".config/wandb")
else:
logger = None
#Dist training
if is_distributed:
nproc_per_node = torch.cuda.device_count()
affinity = set_affinity(local_rank, nproc_per_node)
increase_l2_fetch_granularity()
print(cf.on_yellow("Inferring on given custom dataset!"))
infds = InferenceDataset(args, net)
infds()
if args.log and (not dist.is_initialized() or dist.get_rank() == 0):
logger.experiment.finish()
def analyze_XAI(args):
is_distributed = init_distributed() #normal python vs torchrun!
local_rank = get_local_rank()
def pick_random(temperature, Rs_total, imgs):
results = collections.namedtuple('result', ['Rs_total_lows', 'Rs_total_mids', 'Rs_total_highs',
'imgs_lows', 'imgs_mids', 'imgs_highs'])
dataset_len = len(Rs_total)
indices = np.arange(dataset_len)
lows = indices[np.array(temperature) < 300] #subset index
mids = indices[np.array(temperature) == 306] #subset index
highs = indices[np.array(temperature) > 310] #subset index
NUM_SAMPLES = 100
np.random.seed(42)
lows = np.random.choice(lows, NUM_SAMPLES)
mids = np.random.choice(mids, NUM_SAMPLES)
highs = np.random.choice(highs, NUM_SAMPLES)
temp_lows = torch.tensor([temperature[idx] for idx in lows]).long()
temp_mids = torch.tensor([temperature[idx] for idx in mids]).long()
temp_highs = torch.tensor([temperature[idx] for idx in highs]).long()
Rs_total_lows = [Rs_total[idx][1] for idx in lows]
Rs_total_mids = [Rs_total[idx][1] for idx in mids]
Rs_total_highs = [Rs_total[idx][1] for idx in highs]
imgs_lows = torch.stack([imgs[idx] for idx in lows], dim=0)
imgs_mids = torch.stack([imgs[idx] for idx in mids], dim=0)
imgs_highs = torch.stack([imgs[idx] for idx in highs], dim=0)
[setattr(results, key, val) for key, val in zip(['temp_lows', 'temp_mids', 'temp_highs',
'Rs_total_lows', 'Rs_total_mids', 'Rs_total_highs',
'imgs_lows', 'imgs_mids', 'imgs_highs'],
[temp_lows, temp_mids, temp_highs,
Rs_total_lows, Rs_total_mids, Rs_total_highs,
imgs_lows, imgs_mids, imgs_highs])]
return results
f = open(os.path.join(args.save_dir, "truncated_temperature_" + args.filename), "rb")
temperature = pickle.load(f) #-> np.ndarray
print(cf.yellow("Loaded temperatures..."))
f = open(os.path.join(args.save_dir, "truncated_PH_" + args.filename), "rb")
Rs_total = pickle.load(f) #-> List[List[np.ndarray]]
print(cf.yellow("Loaded PH diagrams..."))
f = open(os.path.join(args.save_dir, "truncated_ProcessedIm_" + args.filename), "rb")
imgs = pickle.load(f) #-> torch.Tensor
print(cf.yellow("Loaded PH images..."))
results = pick_random(temperature, Rs_total, imgs)
path_and_name = os.path.join(args.load_ckpt_path, "{}.pth".format(args.name))
assert args.resume, "Validation and test must be under resumed keyword..."
model = Vision(args)
epoch_start, best_loss = load_state(model, None, None, path_and_name, use_artifacts=args.use_artifacts, logger=None, name=args.name, model_only=True)
model.eval()
SQUARED = 16
xai(args, results.imgs_lows[:SQUARED], results.temp_lows[:SQUARED] - TEMP_RANGES[0], model, method=args.which_xai, title="lows")
gc.collect()
xai(args, results.imgs_mids[:SQUARED], results.temp_mids[:SQUARED] - TEMP_RANGES[0], model, method=args.which_xai, title="mids")
gc.collect()
xai(args, results.imgs_highs[:SQUARED], results.temp_highs[:SQUARED] - TEMP_RANGES[0], model, method=args.which_xai, title="highs")
gc.collect()
# print(results.Rs_total_lows)
wasserstein_difference(args, results.Rs_total_lows, results.Rs_total_mids, results.Rs_total_highs)
gc.collect()
def plot_effective_temperatures(args):
plot_total_temps(os.path.join(args.save_dir, "convnext_all_temps.npz")) ###As of Feb 3rd 2024: needs npz file in "inference_save"
plot_one_temp_parallel(args) ###As of Feb 3rd 2024: needs pickle files in "inference_save"
def get_ml_metrics(args):
###BELOW as of Feb 4th 2024
data = np.load(os.path.join(pathlib.Path(args.save_dir).parent, "inference_save", f"{args.backbone}_all_temps.npz"))
gt, pred = data["gt"], data["pred"]
gt = gt - TEMP_RANGES[0]
ranges = np.arange(TEMP_RANGES[0], TEMP_RANGES[1] + 1).astype(float) #temperatures
pred = np.searchsorted(ranges, pred) #Method 1; (Method 2) try on classification!
thresh = np.array(args.confusion_thresh)
# print(thresh[0])
for_sorting = thresh - TEMP_RANGES[0] #Three classes: 0, 1, 2 for LOW/MID/HIGH
gts = np.searchsorted(for_sorting, gt).reshape(-1, )
preds = np.searchsorted(for_sorting, pred).reshape(-1, )
compute_statistics(gts, preds, labels=np.arange(len(thresh) + 1)) #Three classes: 0, 1, 2 for LOW/MID/HIGH
if __name__ == "__main__":
args = get_args()
print(args.__dict__)
# dutils = data_utils if args.which_mode == "preprocessing" else data_utils_mem
dutils = data_utils
if args.which_mode == "preprocessing":
preprocessing(args)
elif args.which_mode == "train":
job_submit(args)
elif args.which_mode == "distill":
job_submit_distill(args)
elif args.which_mode == "infer":
infer_submit(args)
elif args.which_mode == "infer_custom":
infer_for_customdata(args)
elif args.which_mode == "xai":
analyze_XAI(args)
#[Oct. 3, 2023] python -m main --which_mode xai --name swinv2_model_indiv --backbone swinv2 --filename dppc.pickle --multiprocessing --optimizer torch_adam --log --gpu --epoches 1000 --batch_size 16 --which_xai gradcam --resume
elif args.which_mode == "eff_temp":
plot_effective_temperatures(args)
elif args.which_mode == "ml_metrics":
get_ml_metrics(args)
#python -m main --which_mode train --name vit_model --filename vit.pickle --multiprocessing --optimizer torch_adam --log --gpu --epoches 1000 --batch_size 16 --ce_re_ratio "[1, 0.1]"