-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkd_train_utils.py
488 lines (419 loc) · 26.9 KB
/
kd_train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# https://github.com/haitongli/knowledge-distillation-pytorch/blob/master/mnist/distill_mnist.py
import logging
import pathlib
from typing import List, Union
import os, sys
import pathlib
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import importlib
try:
importlib.import_module("apex.optimizers")
from apex.optimizers import FusedAdam, FusedLAMB
except Exception as e:
pass
from torch.nn.modules.loss import _Loss
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Optimizer
from torch.utils.data import DataLoader, DistributedSampler
from tqdm import tqdm
from transformers import get_linear_schedule_with_warmup
from dist_utils import to_cuda, get_local_rank, init_distributed, seed_everything, \
using_tensor_cores, increase_l2_fetch_granularity, Logger
# from transformers import AdamW
import curtsies.fmtfuncs as cf
import torchmetrics
# https://fairscale.readthedocs.io/en/latest/
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper #anytime
from fairscale.experimental.nn.offload import OffloadModel #Single-GPU
from fairscale.optim.adascale import AdaScale #DDP
from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP #Sharding
from fairscale.optim.oss import OSS #Sharding
import shutil
if torch.__version__.startswith('1.11'):
from torch.distributed.fsdp import FullyShardedDataParallel, CPUOffload
from torch.distributed.fsdp.wrap import (
default_auto_wrap_policy,
enable_wrap,
wrap,
)
elif torch.__version__.startswith('1.13'):
from torch.distributed.fsdp import FullyShardedDataParallel, CPUOffload, BackwardPrefetch
from torch.distributed.fsdp.wrap import (
size_based_auto_wrap_policy,
enable_wrap,
wrap,
)
from train_utils import load_state, save_state
from loss_utils import * #TEMP_RANGES, distillation
#scheduler: https://keras.io/examples/keras_recipes/better_knowledge_distillation/#:~:text=class%20WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule)%3A
# optimizer.zero_grad()
# output = model(data) #Vit
# teacher_output = teacher_model(data) #Convnext
# teacher_output = teacher_output.detach()
# # teacher_output = Variable(teacher_output.data, requires_grad=False) #alternative approach to load teacher_output
# loss = distillation_loss(output, target, teacher_output, T=20.0, alpha=0.7)
def single_train(args, model, teacher_model, loader, loss_func, epoch_idx, optimizer, scheduler, grad_scaler, local_rank, logger: Logger, tmetrics):
#add grad_scaler, local_rank,
model = model.train()
teacher_model = teacher_model.eval()
losses = []
path_and_name = os.path.join(args.load_ckpt_path, "{}.pth".format(args.name))
_loss = 0.
_loss_metrics = 0.
pbar = tqdm(enumerate(loader), total=len(loader), unit='batch', desc=f'Training',
leave=False, disable=(args.silent or get_local_rank() != 0))
for step, packs in pbar:
pbar.set_description(f"Epoch {epoch_idx}")
if args.backbone in ["mpnn", "vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"]:
img_ph, targetT = packs["PH"], packs["temp"]
pack = img_ph, targetT
img_ph, targetT = to_cuda(pack)
else:
print("Significant error in dataloader!")
break
with torch.cuda.amp.autocast(enabled=args.amp):
preds = model(img_ph)
teacher_preds = teacher_model(img_ph) #Convnext
teacher_preds = teacher_preds.detach()
# print(preds, targetT, teacher_preds)
# print("size:", preds.size(), targetT.size(), teacher_preds.size())
loss_kl = loss_func(preds, targetT, teacher_preds, T=20.0, alpha=0.7)
loss_ce_tmp = torch.nn.CrossEntropyLoss(weight=torch.tensor(args.ce_weights).to(preds), label_smoothing=args.label_smoothing)(preds, targetT.long().view(-1, ) - TEMP_RANGES[0]) #To DEBUG
preds_prob = torch.nn.functional.softmax(preds, dim=-1)
# print(preds_prob)
ranges = torch.arange(TEMP_RANGES[0], TEMP_RANGES[1] + 1).to(preds).float() #temperatures
# print(ranges.shape)
assert preds_prob.size(-1) == ranges.size(0), "Num class must match!"
y_pred_expected_T = preds_prob * ranges[None, :] #-->(Batch, numclass)
y_pred_expected_T = y_pred_expected_T.sum(dim=-1) #-->(Batch,)
mse_indiv_loss_tmp = torch.nn.SmoothL1Loss()(targetT.view(-1,).to(y_pred_expected_T), y_pred_expected_T.view(-1,)) #To DEBUG
loss_metrics_mean = tmetrics(y_pred_expected_T.view(-1,).detach().cpu(), targetT.view(-1,).detach().cpu()) #LOG energy only!
# loss_metrics = 0
loss_metrics_std = ((ranges[None, :] - y_pred_expected_T.view(-1,)[:, None]).pow(2) * preds_prob).sum(dim=-1).sqrt().view(-1, ).detach().cpu().mean() #
loss_metrics = torch.tensor([loss_metrics_mean, loss_metrics_std]) #(2, );; std is not an error but uncertainty!!
# loss_metrics = loss_metrics_mean
if args.log:
logger.log_metrics({'rank0_specific_train_loss_total': loss_kl.item()})
logger.log_metrics({'rank0_specific_train_loss_mse': mse_indiv_loss_tmp.item()})
logger.log_metrics({'rank0_specific_train_loss_mae': loss_metrics})
loss = loss_kl
grad_scaler.scale(loss).backward()
# gradient accumulation
if (step + 1) % args.accumulate_grad_batches == 0 or (step+ 1) == len(loader):
if args.gradient_clip:
grad_scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.gradient_clip)
grad_scaler.step(optimizer)
grad_scaler.update()
model.zero_grad(set_to_none=True)
#scheduler.step() #stepwise (self.last_epoch is called (as a step) internally)
# losses.append(loss)
_loss += loss.item()
_loss_metrics += loss_metrics.item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else loss_metrics.detach().cpu().numpy() #numpy conversion to reduce GPU overload!
#if step % 10 == 0: save_state(model, optimizer, scheduler, epoch_idx, path_and_name) #Deprecated
pbar.set_postfix(mse_loss=loss.item(),
mae_loss=loss_metrics.item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else loss_metrics,
ce_loss=loss_ce_tmp.item(),
mse_indiv_loss=mse_indiv_loss_tmp.item())
# return torch.cat(losses, dim=0).mean() #Not MAE
return _loss/len(loader), _loss_metrics/len(loader) #mean loss; Not MAE
def single_val(args, model, teacher_model, loader, loss_func, optimizer, scheduler, logger: Logger, tmetrics, return_data: bool=False):
model = model.eval()
teacher_model = teacher_model.eval()
_loss = 0
_loss_metrics = 0.
with torch.inference_mode():
pbar = tqdm(enumerate(loader), total=len(loader), unit='batch', desc=f'Validation',
leave=False, disable=(args.silent or get_local_rank() != 0))
if return_data: data_to_return = []
# data_to_return = []
for i, packs in pbar:
if args.backbone in ["mpnn", "vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"]:
# coords, phs = packs["Coords"], packs["PH"]
# atom_coords, targetT, cbatch = coords.x, coords.y, coords.batch
# pack = atom_coords, targetT, cbatch
# atom_coords, targetT, cbatch = to_cuda(pack)
# atom_ph, phbatch = phs.x, phs.batch
# pack = atom_ph, phbatch
# atom_ph, phbatch = to_cuda(pack)
img_ph, targetT = packs["PH"], packs["temp"]
pack = img_ph, targetT
img_ph, targetT = to_cuda(pack)
else:
print("Significant error in dataloader!")
break
with torch.cuda.amp.autocast(enabled=args.amp):
preds = model(img_ph)
teacher_preds = teacher_model(img_ph) #Convnext
teacher_preds = teacher_preds.detach()
loss_kl = loss_func(preds, targetT, teacher_preds, T=20.0, alpha=0.7)
preds_prob = torch.nn.functional.softmax(preds, dim=-1)
ranges = torch.arange(TEMP_RANGES[0], TEMP_RANGES[1] + 1).to(preds).float() #temperatures
assert preds_prob.size(-1) == ranges.size(0), "Num class must match!"
y_pred_expected_T = preds_prob * ranges[None, :] #-->(Batch, numclass)
y_pred_expected_T = y_pred_expected_T.sum(dim=-1) #-->(Batch,)
mse_indiv_loss_tmp = torch.nn.SmoothL1Loss()(targetT.view(-1,).to(y_pred_expected_T), y_pred_expected_T.view(-1,)) #To DEBUG
loss_metrics_mean = tmetrics(y_pred_expected_T.view(-1,).detach().cpu(), targetT.view(-1,).detach().cpu()) #LOG energy only!
loss_metrics_std = ((ranges[None, :] - y_pred_expected_T.view(-1,)[:, None]).pow(2) * preds_prob).sum(dim=-1).sqrt().view(-1, ) #(Batch, )
loss_metrics = torch.tensor([loss_metrics_mean, loss_metrics_std.detach().cpu().mean()]) #(2, );; std is not an error but uncertainty!!
# loss_metrics = loss_metrics_mean
# loss_metrics = 0
if args.log:
logger.log_metrics({'rank0_specific_val_loss_total': loss_kl.item()})
logger.log_metrics({'rank0_specific_val_loss_mse': mse_indiv_loss_tmp.item()})
logger.log_metrics({'rank0_specific_val_loss_mae': loss_metrics})
loss = loss_kl
_loss += loss.item()
_loss_metrics += loss_metrics.item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else loss_metrics.detach().cpu().numpy() #numpy conversion to reduce GPU overload!
pbar.set_postfix(mse_loss=loss.item(), mae_loss=loss_metrics.item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else loss_metrics)
# data_to_return.append(torch.stack([y_pred_expected_T, loss_metrics_std], dim=1)) #DEBUG
# data_to_return.append(y_pred_expected_T) #DEBUG
if return_data:
data_to_return.append(torch.stack([y_pred_expected_T, loss_metrics_std], dim=1)) #List[torch.Tensor] --> makes (Batch, 2)
# data_to_return.append(y_pred_expected_T) #List[torch.Tensor] --> makes (Batch, 2)
if return_data: return _loss/len(loader), _loss_metrics/len(loader), torch.cat(data_to_return, dim=0)
# print(torch.cat(data_to_return, dim=0)) #DEBUG
return _loss/len(loader), _loss_metrics/len(loader) #mean loss; Not MAE
def single_test(args, model, teacher_model, loader, loss_func, optimizer, scheduler, logger: Logger, tmetrics, return_data: bool=False):
model = model.eval()
teacher_model = teacher_model.eval()
_loss = 0
_loss_metrics = 0.
with torch.inference_mode():
pbar = tqdm(enumerate(loader), total=len(loader), unit='batch', desc=f'Testing',
leave=False, disable=(args.silent or get_local_rank() != 0))
if return_data: data_to_return = []
# data_to_return = []
for i, packs in pbar:
if args.backbone in ["mpnn", "vit", "swin", "swinv2", "convnext", "restv2", "clip_resnet"]:
img_ph, targetT = packs["PH"], packs["temp"]
pack = img_ph, targetT
img_ph, targetT = to_cuda(pack)
else:
print("Significant error in dataloader!")
break
with torch.cuda.amp.autocast(enabled=args.amp):
preds = model(img_ph)
teacher_preds = teacher_model(img_ph) #Convnext
teacher_preds = teacher_preds.detach()
loss_kl = loss_func(preds, targetT, teacher_preds, T=20.0, alpha=0.7)
preds_prob = torch.nn.functional.softmax(preds, dim=-1)
ranges = torch.arange(TEMP_RANGES[0], TEMP_RANGES[1] + 1).to(preds).float() #temperatures
assert preds_prob.size(-1) == ranges.size(0), "Num class must match!"
y_pred_expected_T = preds_prob * ranges[None, :] #-->(Batch, numclass)
y_pred_expected_T = y_pred_expected_T.sum(dim=-1) #-->(Batch,)
mse_indiv_loss_tmp = torch.nn.SmoothL1Loss()(targetT.view(-1,).to(y_pred_expected_T), y_pred_expected_T.view(-1,)) #To DEBUG
loss_metrics_mean = tmetrics(y_pred_expected_T.view(-1,).detach().cpu(), targetT.view(-1,).detach().cpu()) #LOG energy only!
# loss_metrics = loss_metrics_mean
loss_metrics_std = ((ranges[None, :] - y_pred_expected_T.view(-1,)[:, None]).pow(2) * preds_prob).sum(dim=-1).sqrt().view(-1, ) #(Batch, )
loss_metrics = torch.tensor([loss_metrics_mean, loss_metrics_std.detach().cpu().mean()]) #(2, );; std is not an error but uncertainty!!
# loss_metrics = 0
if args.log:
logger.log_metrics({'rank0_specific_test_loss_total': loss_kl.item()})
logger.log_metrics({'rank0_specific_test_loss_mse': mse_indiv_loss_tmp.item()})
logger.log_metrics({'rank0_specific_test_loss_mae': loss_metrics})
loss = loss_kl
_loss += loss.item()
_loss_metrics += loss_metrics.item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else loss_metrics.detach().cpu().numpy() #numpy conversion to reduce GPU overload!
pbar.set_postfix(mse_loss=loss.item(), mae_loss=loss_metrics.item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else loss_metrics)
# data_to_return.append(torch.stack([y_pred_expected_T, loss_metrics_std], dim=1)) #DEBUG
# data_to_return.append(y_pred_expected_T) #DEBUG
if return_data:
data_to_return.append(torch.stack([y_pred_expected_T, loss_metrics_std], dim=1)) #List[torch.Tensor] --> makes (Batch, 2)
# data_to_return.append(y_pred_expected_T) #List[torch.Tensor] --> makes (Batch, 2)
# print(torch.cat(data_to_return, dim=0)) #DEBUG
if return_data: return _loss/len(loader), _loss_metrics/len(loader), torch.cat(data_to_return, dim=0)
return _loss/len(loader), _loss_metrics/len(loader) #mean loss; Not MAE
def train(model: nn.Module,
teacher_model: nn.Module,
get_loss_func: _Loss,
train_dataloader: DataLoader,
val_dataloader: DataLoader,
test_dataloader: DataLoader,
logger: Logger,
args):
"""Includes evaluation and testing as well!"""
#DDP options
#Init distributed MUST be called in run() function, which calls this train function!
device = torch.cuda.current_device()
model.to(device=device)
teacher_model.to(device=device)
local_rank = get_local_rank()
world_size = dist.get_world_size() if dist.is_initialized() else 1
tmetrics = torchmetrics.MeanAbsoluteError()
#DDP Model
if dist.is_initialized() and not args.shard:
model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)
model._set_static_graph()
model.train()
teacher_model = DistributedDataParallel(teacher_model, device_ids=[local_rank], output_device=local_rank)
teacher_model._set_static_graph()
teacher_model.eval()
print(f"DDP is enabled {dist.is_initialized()} and this is local rank {local_rank} and sharding is {args.shard}!!")
if args.log: logger.start_watching(model) #watch a model!
elif dist.is_initialized() and args.shard:
my_auto_wrap_policy = functools.partial(
default_auto_wrap_policy, min_num_params=100
)
torch.cuda.set_device(local_rank)
model = FSDP(model, fsdp_auto_wrap_policy=my_auto_wrap_policy)
teacher_model = FSDP(teacher_model, fsdp_auto_wrap_policy=my_auto_wrap_policy)
init_start_event = torch.cuda.Event(enable_timing=True)
init_end_event = torch.cuda.Event(enable_timing=True)
#Grad scale
grad_scaler = torch.cuda.amp.GradScaler(enabled=args.amp)
#Optimizer
if args.optimizer == 'adam':
optimizer = FusedAdam(model.parameters(), lr=args.learning_rate, betas=(0.9, 0.999),
weight_decay=args.weight_decay)
base_optimizer = FusedAdam
base_optimizer_arguments = dict(lr=args.learning_rate, betas=(0.9, 0.999), weight_decay=args.weight_decay)
elif args.optimizer == 'lamb':
optimizer = FusedLAMB(model.parameters(), lr=args.learning_rate, betas=(0.9, 0.999),
weight_decay=args.weight_decay)
base_optimizer = FusedLAMB
base_optimizer_arguments = dict(lr=args.learning_rate, betas=(0.9, 0.999), weight_decay=args.weight_decay)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9,
weight_decay=args.weight_decay)
base_optimizer = torch.optim.SGD
base_optimizer_arguments = dict(lr=args.learning_rate, momentum=0.9, weight_decay=args.weight_decay)
elif args.optimizer == 'torch_adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, betas=(0.9, 0.999),
weight_decay=args.weight_decay, eps=1e-8)
base_optimizer = torch.optim.Adam
base_optimizer_arguments = dict(lr=args.learning_rate, betas=(0.9, 0.999), weight_decay=args.weight_decay, eps=1e-8)
elif args.optimizer == 'torch_adamw':
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, betas=(0.9, 0.999),
weight_decay=args.weight_decay, eps=1e-8)
base_optimizer = torch.optim.AdamW
base_optimizer_arguments = dict(lr=args.learning_rate, betas=(0.9, 0.999), weight_decay=args.weight_decay, eps=1e-8)
elif args.optimizer == 'torch_sparse_adam':
optimizer = torch.optim.SparseAdam(model.parameters(), lr=args.learning_rate, betas=(0.9, 0.999),
eps=1e-8)
base_optimizer = torch.optim.SparseAdam
base_optimizer_arguments = dict(lr=args.learning_rate, betas=(0.9, 0.999), eps=1e-8)
# if args.shard:
# optimizer = OSS(
# params=model.parameters(),
# optim=base_optimizer,
# **base_optimizer_arguments)
# model = ShardedDDP(model, optimizer) #OOS optimizer and Single-gpu model to ShardedDDP
#SCHEDULER
total_training_steps = len(train_dataloader) * args.epoches
warmup_steps = total_training_steps // args.warm_up_split
if args.scheduler == "linear":
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_training_steps) #can be used for every step (and epoch if wanted); per training step?
elif args.scheduler == "reduce":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08, verbose=False)
scheduler_re = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08, verbose=False)
#Load state (across multi GPUs)
assert args.teacher_name is not None, "teacher_name must exist!"
teacher_path_and_name = os.path.join(args.load_ckpt_path, "{}.pth".format(args.teacher_name)) #Set argment!
print(cf.on_green("Loading a pretrained TEACHER model..."))
scheduler_groups = [scheduler, scheduler_re] #step and epoch schedulers
#TEACHER model ONLY!
_ = load_state(teacher_model, None, None, teacher_path_and_name, use_artifacts=args.use_artifacts, logger=logger, name=args.name, model_only=True)
#STUDENT model ONLY!
path_and_name = os.path.join(args.load_ckpt_path, "{}.pth".format(args.name))
epoch_start, best_loss = load_state(model, optimizer, scheduler_groups, path_and_name, use_artifacts=args.use_artifacts, logger=logger, name=args.name) if args.resume else (0, 1e5)
best_loss = best_loss
#DDP training: Total stats (But still across multi GPUs)
init_start_event.record()
for epoch_idx in range(epoch_start, args.epoches):
if isinstance(train_dataloader.sampler, DistributedSampler):
train_dataloader.sampler.set_epoch(epoch_idx)
###TRAINING
train_epoch = single_train
#DDP training: Individual stats (i.e. train_epoch; also still across multi GPUs)
loss, loss_metrics = train_epoch(args, model, teacher_model, train_dataloader, get_loss_func, epoch_idx, optimizer, scheduler, grad_scaler, local_rank,
logger, tmetrics) #change to single_train with DDP ;; model is AUTO-updated...
#ZERO RANK LOGGING
if dist.is_initialized():
loss = torch.tensor(loss, dtype=torch.float, device=device)
loss_metrics = torch.tensor(loss_metrics, dtype=torch.float, device=device)
"""
#Works!
#https://github.com/open-mmlab/mmdetection/blob/482f60fe55c364e50e4fc4b50893a25d8cc261b0/mmdet/apis/test.py#L160
#only on local rank 0
device = torch.cuda.current_device()
losses = [torch.tensor(0., device=device) for _ in range(world_size)] #list of tensors: must put "device=cuda"
torch.distributed.all_gather(losses, loss) #Gather to losses!
losses = torch.tensor([_ for _ losses]).to(device)
#losses = loss.new_zeros(len(losses)).data.copy_(torch.tensor(losses)) #tensor of size world_size
"""
torch.distributed.all_reduce(loss, op=torch.distributed.ReduceOp.SUM) #Sum to loss
loss = (loss / world_size).item()
#print(f"Sanity check: all_reduced GPU mean loss {loss} AND all_gather GPU mean loss {losses.mean()}...")
logging.info(f'Train loss: {loss}')
torch.distributed.all_reduce(loss_metrics, op=torch.distributed.ReduceOp.SUM) #Sum to loss
loss_metrics = (loss_metrics / world_size).item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else (loss_metrics / world_size)
#print(f"Sanity check: all_reduced GPU mean loss {loss} AND all_gather GPU mean loss {losses.mean()}...")
logging.info(f'Train MAE: {loss_metrics}')
if args.log:
logger.log_metrics({'ALL_REDUCED_train_loss': loss}, epoch_idx) #zero rank only
logger.log_metrics({'ALL_REDUCED_train_MAE': loss_metrics}, epoch_idx) #zero rank only
#mae_reduced = tmetrics.compute() #Synced and reduced autometically!
#logger.log_metrics({'ALL_REDUCED_train_mae_loss': mae_reduced.item()}, epoch_idx) #zero rank only
tmetrics.reset()
###EVALUATION
evaluate = single_val
val_loss, loss_metrics = evaluate(args, model, teacher_model, val_dataloader, get_loss_func, optimizer, scheduler, logger, tmetrics) #change to single_val with DDP
if dist.is_initialized():
val_loss = torch.tensor(val_loss, dtype=torch.float, device=device)
loss_metrics = torch.tensor(loss_metrics, dtype=torch.float, device=device)
torch.distributed.all_reduce(val_loss, op=torch.distributed.ReduceOp.SUM)
val_loss = (val_loss / world_size).item()
torch.distributed.all_reduce(loss_metrics, op=torch.distributed.ReduceOp.SUM) #Sum to loss
loss_metrics = (loss_metrics / world_size).item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else (loss_metrics / world_size)
if args.log:
logger.log_metrics({'ALL_REDUCED_val_loss': val_loss}, epoch_idx)
logger.log_metrics({'ALL_REDUCED_val_MAE': loss_metrics}, epoch_idx) #zero rank only
#zero rank only
#mae_reduced = tmetrics.compute() #Synced and reduced autometically!
#logger.log_metrics({'ALL_REDUCED_val_mae_loss': mae_reduced.item()}, epoch_idx) #zero rank only
tmetrics.reset()
#scheduler_re.step(val_loss) #Not on individual stats but the total stats
if args.scheduler == "linear": scheduler.step()
elif args.scheduler == "reduce": scheduler.step(val_loss)
scheduler_groups = [scheduler, scheduler_re] #step and epoch schedulers
if val_loss < best_loss:
path_and_name = os.path.join(args.load_ckpt_path, "{}.pth".format(args.name))
print(cf.on_yellow("Saving a current best STUDENT model..."))
save_state(model, optimizer, scheduler_groups, epoch_idx, val_loss, path_and_name)
# if args.log: logger.log_artifacts(name=f"{args.name}_model_objects", dtype="pytorch_models", path_and_name=path_and_name) #version will be appended to name; path_and_name is model(.pt)
best_loss = val_loss
###TESTING
test_loss, loss_metrics = single_test(args, model, teacher_model, test_dataloader, get_loss_func, optimizer, scheduler, logger, tmetrics) #change to single_val with DDP
if dist.is_initialized():
test_loss = torch.tensor(test_loss, dtype=torch.float, device=device)
loss_metrics = torch.tensor(loss_metrics, dtype=torch.float, device=device)
torch.distributed.all_reduce(test_loss, op=torch.distributed.ReduceOp.SUM)
test_loss = (test_loss / world_size).item()
torch.distributed.all_reduce(loss_metrics, op=torch.distributed.ReduceOp.SUM) #Sum to loss
loss_metrics = (loss_metrics / world_size).item() if (hasattr(loss_metrics, "item") and loss_metrics.numel() == 1) else (loss_metrics / world_size)
if args.log:
logger.log_metrics({'ALL_REDUCED_test_loss': test_loss}, epoch_idx) #zero rank only
logger.log_metrics({'ALL_REDUCED_test_MAE': loss_metrics}, epoch_idx) #zero rank only
#mae_reduced = tmetrics.compute() #Synced and reduced autometically!
#logger.log_metrics({'ALL_REDUCED_test_mae_loss': mae_reduced.item()}, epoch_idx) #zero rank only
tmetrics.reset()
model.train()
init_end_event.record()
if local_rank == 0:
print(f"CUDA event elapsed time: {init_start_event.elapsed_time(init_end_event) / 1000}sec")
print(cf.on_yellow("Training is OVER..."))
print(cf.on_yellow("Calling and saving STUDENT model..."))
path_and_name = os.path.join(args.load_ckpt_path, "{}.pth".format(args.name))
epoch_start, best_loss = load_state(model, optimizer, scheduler_groups, path_and_name, use_artifacts=False, logger=logger, name=args.name)
save_state(model, optimizer, scheduler_groups, epoch_idx, val_loss, path_and_name)
if args.log: logger.log_artifacts(name=f"{args.name}_model_objects", dtype="pytorch_models", path_and_name=path_and_name) #version will be appended to name; path_and_name is model(.pt)
#DONE: SAVE ONE MORE TIME before ending???
if dist.is_initialized():
dist.destroy_process_group()