-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinterpret_utils.py
264 lines (218 loc) · 12.3 KB
/
interpret_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""
Functions taken and modified from https://github.com/hila-chefer/Transformer-MM-Explainability
Credit:
@InProceedings{Chefer_2021_ICCV,
author = {Chefer, Hila and Gur, Shir and Wolf, Lior},
title = {Generic Attention-Model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {397-406}
}
"""
from typing import Dict, Optional
# from topologylayer.nn import RipsLayer, AlphaLayer
# import cv2
import numpy as np
import torch
from torch import nn
import matplotlib as mpl
import matplotlib.pyplot as plt
# from .misc import patchify, unpatchify
import os
from captum.attr import Saliency, Lime, LayerGradCam, LayerAttribution
from captum.attr._core.lime import get_exp_kernel_similarity_function
from model import Vision
from transformers import ViTFeatureExtractor, ConvNextFeatureExtractor, ViTModel, SwinModel, Swinv2Model, ConvNextModel, ViTConfig, SwinConfig, Swinv2Config, ConvNextConfig
from loss_utils import TEMP_RANGES
from train_utils import load_state, single_val, single_test
def xai(args, images: torch.Tensor, gts: torch.LongTensor, model: torch.nn.Module, method="saliency", title="lows"):
mpl.rcParams['xtick.labelsize'] = 14
mpl.rcParams['ytick.labelsize'] = 14
mpl.rcParams['axes.titlesize'] = 16
title_ori = title
title = method + "_" + title
feature_extractor = ViTFeatureExtractor(do_resize=False, size=Vision.IMAGE_SIZE, do_normalize=True, image_mean=Vision.IMAGE_MEAN, image_std=Vision.IMAGE_STD, do_rescale=False) if args.backbone in ["vit", "swin", "swinv2"] else ConvNextFeatureExtractor(do_resize=False, size=Vision.IMAGE_SIZE, do_normalize=True, image_mean=Vision.IMAGE_MEAN, image_std=Vision.IMAGE_STD, do_rescale=False)
img : torch.FloatTensor = images.detach().cpu().unbind(dim=0)
img : List[np.ndarray] = list(map(lambda inp: inp.numpy(), img))
img: Dict[str, torch.FloatTensor] = feature_extractor(img, return_tensors="pt") #range [-1, 1]
img = img["pixel_values"] #BCHW tensor! range: [-1,1]
images = img
assert method in ["saliency", "gradcam", "lime", "attention"]
class Layer4Gradcam(torch.nn.Module):
def __init__(self, args, model: torch.nn.Module):
super().__init__()
self.model = model
self.args = args
def fhook(m, i, o):
# print(o.size())
if args.backbone == "convnext":
self.layer_forward_output = o #BCHW, only the last needs [0]!
elif args.backbone == "swinv2":
# print(o[-1][-1].size())
self.layer_forward_output = o #BCHW, only the last needs [0]!
print(f"Forward {m.__class__.__name__} is registered...")
def bhook(m, i, o):
# print(o[0].size())
if args.backbone == "convnext":
self.layer_backward_output = o[0] #BCHW
# elif args.backbone = "swinvw":
# print(o[-1][-1][-1].size())
# self.layer_forward_output = o[-1][-1] #BCHW, only the last needs [0]!
print(f"Backward {m.__class__.__name__} is registered...")
# print(len(self.model.pretrained.encoder.stages))
if args.backbone == "convnext":
self.model.pretrained.encoder.stages[-4].register_forward_hook(fhook)
self.model.pretrained.encoder.stages[-4].register_backward_hook(bhook)
elif args.backbone == "swinv2":
self.model.pretrained.encoder.register_forward_hook(fhook)
def attribute(self, inputs: torch.Tensor, target: torch.LongTensor, method: str):
inputs = inputs.detach().requires_grad_(True) #make it leaf and differentiable!
if self.args.backbone == "convnext":
method = "gradcam" if method != "saliency" else "saliency"
preds = self.model(inputs)
preds = torch.gather(input=preds, dim=1, index=target.view(-1, 1).long()) # -> (B,1)
# torch.autograd.grad(preds, inputs, grad_outputs=torch.ones_like(preds))[0]
# preds = preds.amax(dim=-1)
# print(preds.size())
preds.backward(gradient=torch.ones_like(preds))
module_output = self.layer_forward_output
module_upstream_gradient = self.layer_backward_output
grads_power_2 = module_upstream_gradient**2 #Bcddd
grads_power_3 = grads_power_2 * module_upstream_gradient
sum_activations = module_output.sum(dim=(2,3), keepdim=True) #Bc11
eps = 0.000001
aij = grads_power_2 / (2 * grads_power_2 +
sum_activations * grads_power_3 + eps) #Bcdd
aij = torch.where(module_upstream_gradient != module_upstream_gradient.new_tensor(0.), aij, module_upstream_gradient.new_tensor(0.)) #Non-zeros #Bcdd
weights = torch.maximum(module_upstream_gradient, module_upstream_gradient.new_tensor(0.)) * aij #Only positive #Bcddd
weights = weights.sum(dim=(2,3), keepdim=True) #Bc11
gradcampp = (module_output * weights).sum(dim=1, keepdim=True) #Bcdd --> B1dd
gradcampp = torch.maximum(gradcampp, torch.tensor(0.)) #Only positives
return gradcampp #B1HW
elif self.args.backbone == "swinv2":
method = "attention" if method != "saliency" else "saliency"
module_output = self.model.pretrained(inputs, output_attentions=True)
# module_output = self.layer_forward_output #Hooked at encoder output!
print(module_output.attentions[-3].size()) #second layer/stage!
return module_output.attentions[-3].amax(dim=1, keepdim=True) #-> (B,1,L,L)
def forward_func(images):
preds: torch.Tensor = model(images) #-> (B,C)
return preds
def perturb_func(original_input: torch.Tensor,
**kwargs)->torch.Tensor:
return original_input + original_input.new_tensor(torch.randn_like(original_input))
similarity_func = get_exp_kernel_similarity_function(distance_mode="euclidean")
if method == "saliency":
attribute_method = Saliency
attrs = attribute_method(forward_func=forward_func)
attr_output = attrs.attribute(images, target=gts.view(-1)) #->(B,C,N,N)
elif method == "gradcam_defunct":
attribute_method = LayerGradCam
attrs = attribute_method(forward_func=forward_func, layer=layer)
attr_output = attrs.attribute(images, target=gts.view(-1)) #->(B,C,N,N)
attr_output = LayerAttribution.interpolate(attr_output, (Vision.IMAGE_SIZE, Vision.IMAGE_SIZE))
elif method == "gradcam":
attribute_method = Layer4Gradcam
attrs = attribute_method(args, model)
attr_output = attrs.attribute(images, target=gts.view(-1), method=method) #->(B,1,N,N)
# print(sizes, attr_output.size())
attr_output = torch.nn.functional.interpolate(attr_output, (Vision.IMAGE_SIZE, Vision.IMAGE_SIZE) )
elif method == "attention":
attribute_method = Layer4Gradcam
attrs = attribute_method(args, model)
attr_output = attrs.attribute(images, target=gts.view(-1), method=method) #->(B,1,N,N)
# print(sizes, attr_output.size())
attr_output = torch.nn.functional.interpolate(attr_output, (Vision.IMAGE_SIZE, Vision.IMAGE_SIZE) )
elif method == "lime":
attribute_method = Lime
attrs = attribute_method(forward_func=forward_func, similarity_func=similarity_func, perturb_func=perturb_func)
attr_output = attrs.attribute(images, target=gts.view(-1)) #->(B,C,N,N)
ROWS, COLS = int(np.sqrt(images.size(0))), int(np.sqrt(images.size(0)))
fig, ax = plt.subplots(ROWS, COLS, figsize=(8,8))
mins, maxs = attr_output.min().data, attr_output.max().data
attr_output.data = (attr_output.data - mins) / (maxs - mins)
for idx in range(images.size(0)):
im = ax.flatten()[idx].imshow(attr_output[idx].permute(1,2,0).detach().cpu().numpy(), cmap=plt.cm.get_cmap("jet"), vmin=0., vmax=1)
fig.suptitle(f"{method.upper()}: {title_ori.strip('s').upper()} Temperature Lipids")
fig.tight_layout()
fig.colorbar(im, ax=ax.ravel().tolist()) #https://stackoverflow.com/questions/13784201/how-to-have-one-colorbar-for-all-subplots
fig.savefig(os.path.join(args.save_dir, title))
plt.close()
return attr_output
# rule 5 from paper
def avg_heads(cam: torch.Tensor, grad: torch.Tensor):
cam = cam.reshape(-1, cam.shape[-2], cam.shape[-1])
grad = grad.reshape(-1, grad.shape[-2], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
return cam
# rule 6 from paper
def apply_self_attention_rules(R_ss: torch.Tensor, cam_ss: torch.Tensor):
R_ss_addition = torch.matmul(cam_ss, R_ss)
return R_ss_addition
def generate_relevance(model: nn.Module, inputs: Dict[str, torch.Tensor], index: Optional[int] = None):
output = model(**inputs, register_hook=True)["logits"]
if index is None:
index = torch.argmax(output, dim=-1)
one_hot = torch.zeros((1, output.size()[-1]), dtype=torch.float32)
one_hot[0, index] = 1
one_hot = one_hot.requires_grad_(True)
one_hot = torch.sum(one_hot * output)
model.zero_grad()
one_hot.backward(retain_graph=True)
num_tokens = model.vit.encoder.layer[0].attention.attention.get_attention_map().shape[-1]
R = torch.eye(num_tokens, num_tokens)
for layer in model.vit.encoder.layer:
grad = layer.attention.attention.get_attention_gradients()
cam = layer.attention.attention.get_attention_map()
cam = avg_heads(cam, grad)
R += apply_self_attention_rules(R, cam)
return R[0, 1:]
# create heatmap from mask on image
def show_cam_on_image(img: torch.Tensor, mask: torch.Tensor):
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
img = torch.einsum("chw->hwc", unpatchify(patchify(torch.einsum("hwc->chw", img))))
img = np.float32(img)
cam = heatmap + img
cam = cam / np.max(cam)
return cam
def generate_visualization(
model: nn.Module,
inputs: Dict[str, torch.Tensor],
image_hw: int,
patch_size: int = 16,
class_index: Optional[int] = None,
):
transformer_attribution = generate_relevance(model, inputs, index=class_index).detach()
transformer_attribution = transformer_attribution.reshape(1, 1, image_hw // patch_size, image_hw // patch_size)
transformer_attribution = torch.nn.functional.interpolate(
transformer_attribution, scale_factor=16, mode="bilinear"
)
transformer_attribution = transformer_attribution.reshape(image_hw, image_hw)
transformer_attribution = (transformer_attribution - transformer_attribution.min()) / (
transformer_attribution.max() - transformer_attribution.min()
)
original_image = inputs["pixel_values"].squeeze()
image_transformer_attribution = original_image.permute(1, 2, 0)
image_transformer_attribution = (image_transformer_attribution - image_transformer_attribution.min()) / (
image_transformer_attribution.max() - image_transformer_attribution.min()
)
vis = show_cam_on_image(image_transformer_attribution, transformer_attribution)
vis = np.uint8(255 * vis)
vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR)
return vis
if __name__ == "__main__":
from main import get_args
args = get_args()
path_and_name = os.path.join(args.load_ckpt_path, "{}.pth".format(args.name))
assert args.resume, "Validation and test must be under resumed keyword..."
model = Vision(args)
epoch_start, best_loss = load_state(model, None, None, path_and_name, use_artifacts=args.use_artifacts, logger=None, name=args.name, model_only=True)
model.eval()
images = torch.rand(32, 3, 128, 128)
y_true = torch.LongTensor(32).random_(TEMP_RANGES[0], TEMP_RANGES[1])
ranges = torch.arange(0, TEMP_RANGES[2]).to(images).long() #48 temp bins
gts = ranges.index_select(dim=0, index = y_true.to(images).view(-1,).long() - TEMP_RANGES[0])
xai(args, images, gts, model, method=args.which_xai)