-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_description.py
36 lines (27 loc) · 1.35 KB
/
generate_description.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from transformers import GPT2Tokenizer, Seq2SeqTrainingArguments
from prot2text_dataset.torch_geometric_loader import Prot2TextDataset
from prot2text_model.utils import Prot2TextTrainer
from prot2text_model.Model import Prot2TextModel
from prot2text_model.tokenization_prot2text import Prot2TextTokenizer
import torch
import os
import argparse
argParser = argparse.ArgumentParser()
argParser.add_argument("--model_path", help="path to the prot2text model")
argParser.add_argument("--protein_alphafold_id", default=None, help="the AlphaFold ID of the protein")
argParser.add_argument("--protein_sequence", default=None, help="the amino-acid seuqence of the protein")
# usage:
# python generate_description.py \
# --model_path ./models/prot2text_base \
# --protein_alphafold_id \
# --protein_sequence
args = argParser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = Prot2TextTokenizer.from_pretrained(args.model_path)
model = Prot2TextModel.from_pretrained(args.model_path)
descrpition = model.generate_protein_description(protein_pdbID=args.protein_alphafold_id,
protein_sequence=args.protein_sequence,
tokenizer=tokenizer,
device=device)
print()
print(descrpition)