-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_prot2text.py
111 lines (96 loc) · 4.62 KB
/
evaluate_prot2text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from transformers import GPT2Tokenizer, Seq2SeqTrainingArguments
from prot2text_dataset.torch_geometric_loader import Prot2TextDataset
from prot2text_model.utils import Prot2TextTrainer
from prot2text_model.Model import Prot2TextModel
from prot2text_model.tokenization_prot2text import Prot2TextTokenizer
import evaluate
from torch_geometric.loader import DataLoader
import pandas as pd
from transformers.utils import logging
from tqdm import tqdm
import torch
import os
import argparse
argParser = argparse.ArgumentParser()
argParser.add_argument("--model_path", help="path to the prot2text model")
argParser.add_argument("--data_path", help="root folder of the data")
argParser.add_argument("--csv_path", help="csv containing the protein dataset to evaluate")
argParser.add_argument("--split", help="train, test or eval csv?")
argParser.add_argument("--batch_per_device", help="batch size for each device")
argParser.add_argument("--save_results_path", help="path to save the generated description")
# usage for single GPU:
# python evaluate_prot2text.py \
# --model_path ./models/prot2text_base \
# --data_path ./data/dataset/ \
# --split test \
# --csv_path ./data/test.csv \
# --batch_per_device 4 \
# --save_results_path ./results/prot2text_base_results.csv
# usage for multiple GPUs:
# python -u -m torch.distributed.run --nproc_per_node <number of gpus> --nnodes <number of nodes> --node_rank 0 evaluate_prot2text.py \
# --model_path ./models/prot2text_base \
# --data_path ./data/dataset/ \
# --split test \
# --csv_path ./data/test.csv \
# --batch_per_device 4 \
# --save_results_path ./results/prot2text_base_results.csv
args = argParser.parse_args()
tokenizer = Prot2TextTokenizer.from_pretrained(args.model_path)
model = Prot2TextModel.from_pretrained(args.model_path)
eval_dataset = Prot2TextDataset(root=args.data_path,
tokenizer=tokenizer,
file_path=args.csv_path,
block_size=256,
split=args.split)
print('eval set loaded')
batch_size = int(args.batch_per_device)
model.eval()
bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
bert_score = evaluate.load("bertscore")
args_seq = Seq2SeqTrainingArguments(output_dir='./', per_device_eval_batch_size=batch_size)
trainer = Prot2TextTrainer(model=model, args=args_seq, eval_dataset=eval_dataset)
d = trainer.get_eval_dataloader()
if torch.distributed.is_initialized():
if torch.distributed.get_rank()==0:
if os.path.exists(args.save_results_path):
os.remove(args.save_results_path)
else:
if os.path.exists(args.save_results_path):
os.remove(args.save_results_path)
names = list()
generated = list()
functions = list()
for inputs in tqdm(d):
inputs = inputs.to_dict()
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
names += inputs['name']
functions += tokenizer.batch_decode(inputs['decoder_input_ids'], skip_special_tokens=True)
inputs['decoder_input_ids'] = inputs['decoder_input_ids'][:,0:1]
inputs["decoder_attention_mask"] = torch.ones(inputs['decoder_input_ids'].shape[0], 1)
inputs = {k: v.to(device=torch.cuda.current_device(), non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
tok_ids = model.generate(inputs=None, **inputs,
num_beams=1,
early_stopping=False,
no_repeat_ngram_size=None,
length_penalty=1.0)
generated += tokenizer.batch_decode(tok_ids, skip_special_tokens=True)
data= {'name':names, 'generated': generated, 'function':functions}
df = pd.DataFrame(data)
df.to_csv(args.save_results_path, index=False, mode='a')
if torch.distributed.is_initialized():
torch.distributed.barrier()
if torch.distributed.get_rank() > 0:
exit(0)
res = pd.read_csv(args.save_results_path).drop_duplicates()
res = res.drop(res[res['name'] == 'name'].index)
res_bleu = bleu.compute(predictions=res['generated'].tolist(), references=res['function'].tolist())
res_rouge = rouge.compute(predictions=res['generated'].tolist(), references=res['function'].tolist())
res_bertscore = bert_score.compute(predictions=res['generated'].tolist(), references=res['function'].tolist(),
model_type="dmis-lab/biobert-large-cased-v1.1", num_layers=24)
print(res_bleu)
print(res_rouge)
def Average(lst):
return sum(lst) / len(lst)
print('Bert Score: ', Average(res_bertscore['f1']))