-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_prop.py
223 lines (191 loc) · 9.78 KB
/
train_prop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import torch.nn as nn
import torch.utils.tensorboard
import tqdm
from easydict import EasyDict
from torch.utils.data import DataLoader
from datasets.qm9_property import TARGET_NAMES
from utils import misc as utils_misc
from utils.parsing_args import get_prop_pred_args
from utils.transforms import get_edge_transform
torch.multiprocessing.set_sharing_strategy('file_system')
def main():
args, config = get_prop_pred_args()
# Logging
if args.logging:
log_dir = utils_misc.get_new_log_dir(root=args.log_dir, prefix=config['data']['dataset_name'], tag=args.tag)
logger = utils_misc.get_logger('train', log_dir)
writer = torch.utils.tensorboard.SummaryWriter(log_dir)
ckpt_mgr = utils_misc.CheckpointManager(log_dir, logger=logger, keep_n_ckpt=args.keep_n_ckpt)
# save config
utils_misc.save_config(os.path.join(log_dir, 'config.yml'), config)
else:
logger = utils_misc.get_logger('train', None)
writer = utils_misc.BlackHole()
ckpt_mgr = utils_misc.BlackHole()
config = EasyDict(config)
utils_misc.seed_all(config.train.seed)
logger.info(args)
edge_transform = get_edge_transform(
config.data.edge_transform_mode, config.data.aux_edge_order, config.data.cutoff, config.data.cutoff_pos)
train_dset = utils_misc.get_prop_dataset(config.data, edge_transform, 'train', args.pre_pos_path, args.pre_pos_filename)
val_dset = utils_misc.get_prop_dataset(config.data, edge_transform, 'valid', args.pre_pos_path, args.pre_pos_filename)
test_dset = utils_misc.get_prop_dataset(config.data, edge_transform, 'test', args.pre_pos_path, args.pre_pos_filename)
logger.info('TrainSet %d | ValSet %d | TestSet %d' % (len(train_dset), len(val_dset), len(test_dset)))
train_loader = DataLoader(train_dset, batch_size=config.train.batch_size, collate_fn=utils_misc.collate_prop,
num_workers=config.train.num_workers, shuffle=True, drop_last=True)
val_loader = DataLoader(val_dset, batch_size=config.train.batch_size * 2, collate_fn=utils_misc.collate_prop,
num_workers=config.train.num_workers, shuffle=False, drop_last=False)
test_loader = DataLoader(test_dset, batch_size=config.train.batch_size * 2, collate_fn=utils_misc.collate_prop,
num_workers=config.train.num_workers, shuffle=False, drop_last=False)
# Model
logger.info('Building model...')
target_index = TARGET_NAMES.index(config.data.target_name)
target_mean = train_dset.target_mean[target_index]
target_std = train_dset.target_std[target_index]
if args.resume is None:
model = utils_misc.build_prop_pred_model(
config,
target_index=target_index,
target_mean=target_mean,
target_std=target_std
)
else:
logger.info('Resuming from %s' % args.resume)
if args.resume_iter is None:
ckpt_resume = utils_misc.CheckpointManager(
args.resume, logger=logger, keep_n_ckpt=args.keep_n_ckpt).load_latest()
else:
ckpt_resume = utils_misc.CheckpointManager(
args.resume, logger=logger, keep_n_ckpt=args.keep_n_ckpt).load_with_iteration(args.resume_iter)
config = ckpt_resume['config'] # override config
model = utils_misc.build_prop_pred_model(
config,
target_index=target_index,
target_mean=target_mean,
target_std=target_std
)
model.load_state_dict(ckpt_resume['state_dict'])
model = model.to(args.device)
logger.info(repr(model))
logger.info(f'# trainable parameters: {utils_misc.count_parameters(model) / 1e6:.4f} M')
# Optimizer and scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=config.train.lr, weight_decay=config.train.weight_decay,
amsgrad=True if config.train.opt_type == 'amsgrad' else False)
if config.train.sched_type == 'plateau':
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
factor=config.train.sched_factor,
patience=config.train.sched_patience,
min_lr=config.train.min_lr
)
elif config.train.sched_type == 'cos':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.train.num_epochs)
else:
raise ValueError(config.train.sched_type)
if config.train.pred_loss_type == 'mse':
loss_func = nn.MSELoss()
else: # mae
loss_func = nn.L1Loss()
if args.resume:
logger.info('Restoring optimizer and scheduler from %s' % args.resume)
optimizer.load_state_dict(ckpt_resume['opt_state_dict'])
scheduler.load_state_dict(ckpt_resume['sche_state_dict'])
# Main loop
logger.info('Start training...')
if args.resume is not None:
start_it = ckpt_resume['iteration'] + 1
validate(ckpt_resume['iteration'], val_loader, model, logger, args.device,
config.data.target_name, config.train)
else:
start_it = 1
best_val_loss = float('inf')
best_val_mae = float('inf')
best_test_mae = float('inf')
best_val_epoch = 0
patience = 0
torch.cuda.empty_cache()
for epoch in tqdm.trange(start_it, config.train.num_epochs + 1, dynamic_ncols=True, desc='Training'):
train(epoch, train_loader, model, loss_func, optimizer, scheduler,
logger, writer, args.device, config.data.target_name, config.train)
avg_val_loss, avg_rescale_mae = validate(
epoch, val_loader, model, logger, args.device, config.data.target_name,
config.train, scheduler, writer, tag='Val ')
avg_test_loss, test_rescale_mae = validate(
epoch, test_loader, model, logger, args.device, config.data.target_name, config.train, tag='Test')
if avg_val_loss < best_val_loss:
patience = 0
best_val_loss = avg_val_loss
best_val_mae = avg_rescale_mae
best_test_mae = test_rescale_mae
best_val_epoch = epoch
logger.info(
f'Best val loss achieves: {best_val_loss:.4f} (rescale mae: {best_val_mae:.4f}) at epoch {best_val_epoch} '
f'(test rescale mae: {best_test_mae: .4f})'
)
ckpt_mgr.save(model, optimizer, scheduler, config, avg_val_loss, epoch, logger)
else:
patience += 1
logger.info(
f'Patience {patience} / {config.train.patience} '
f'Best val loss: {best_val_loss:.4f} (rescale mae: {best_val_mae:.4f}) at epoch {best_val_epoch} '
f'(test rescale mae: {best_test_mae: .4f})'
)
if patience == config.train.patience or epoch == config.train.num_epochs:
logger.info('Max patience! Stop training and evaluate on the test set!')
best_ckpt = ckpt_mgr.load_best()
model.load_state_dict(best_ckpt['state_dict'])
validate(epoch, test_loader, model, logger, args.device, config.data.target_name, config.train)
break
def train(epoch, train_loader, model, loss_func, optimizer, scheduler, logger, writer, device,
target_name, config):
model.train()
target_index = TARGET_NAMES.index(target_name)
it = 0
num_it = len(train_loader)
optimizer.zero_grad()
for batch, labels, meta_info in tqdm.tqdm(train_loader, dynamic_ncols=True, desc=f'Epoch {epoch}', position=1):
it += 1
batch = batch.to(torch.device(device))
labels = labels.to(device)[:, target_index]
pred, gen_pos = model(batch, config.pos_type)
pred_loss = loss_func(pred.view(-1), labels)
loss = pred_loss / config.n_acc_batch
loss.backward()
if it % config.n_acc_batch == 0:
if config.grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_norm)
optimizer.step()
optimizer.zero_grad()
if it % config.train_report_iter == 0:
logger.info('[Train] Epoch %03d Iter %04d | Loss %.6f | Lr %.4f * 1e-3' % (
epoch, it, loss.item(), optimizer.param_groups[0]['lr'] * 1000))
writer.add_scalar('train/loss', loss, it + epoch * num_it)
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], it + epoch * num_it)
writer.flush()
if config.sched_type == 'cos':
scheduler.step()
def validate(epoch, val_loader, model, logger, device,
target_name, config, scheduler=None, writer=None, tag='Validate'):
with torch.no_grad():
model.eval()
maes = []
target_index = TARGET_NAMES.index(target_name)
for batch, labels, meta_info in tqdm.tqdm(val_loader, dynamic_ncols=True, desc='Validating', leave=None):
batch = batch.to(torch.device(device))
labels = labels.to(device)[:, target_index]
pred, gen_pos = model(batch, config.pos_type)
mae = (pred.view(-1) - labels).abs()
maes.append(mae)
mae = torch.cat(maes, dim=0).cpu() # [num_examples, num_targets]
avg_loss = mae.mean()
mae = 1000 * mae if target_name in ['homo', 'lumo', 'gap', 'zpve', 'u0', 'u298', 'h298', 'g298'] else mae
logger.info(f'[{tag}] Epoch {epoch:03d} | Target: {target_name} Avg loss {avg_loss:.6f} '
f'rescale MAE: {mae.mean():.5f} ± {mae.std():.5f}')
if config.sched_type == 'plateau' and scheduler is not None:
scheduler.step(avg_loss)
if writer is not None:
writer.add_scalar('val/mae', mae.mean(), epoch)
writer.flush()
return avg_loss, mae.mean()
if __name__ == '__main__':
main()