-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_rdkit.py
61 lines (49 loc) · 1.99 KB
/
test_rdkit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import torch.utils.tensorboard
from tqdm.auto import tqdm
from easydict import EasyDict
from torch.utils.data import DataLoader
from models.conf_model import compute_min_loss, get_init_pos
from utils import eval_opt as utils_eval
from utils import misc as utils_misc
from utils.parsing_args import get_conf_opt_args
from utils.transforms import get_edge_transform
from utils.evaluation import evaluate_conf
import copy
import numpy as np
import multiprocessing
from functools import partial
from time import time
torch.multiprocessing.set_sharing_strategy('file_system')
def main():
args, config = get_conf_opt_args()
# Logging
logger = utils_misc.get_logger('eval', None)
config = EasyDict(config)
utils_misc.seed_all(config.train.seed)
logger.info(args)
edge_transform = get_edge_transform(
config.data.edge_transform_mode, config.data.aux_edge_order, config.data.cutoff, config.data.cutoff_pos)
test_dset = utils_misc.get_conf_dataset(config.data, config.data.test_dataset, edge_transform,
rdkit_mol=False, n_gen_samples='auto')
logger.info('TestSet %d' % (len(test_dset)))
data_list = []
for G, labels, meta_info in tqdm(test_dset):
rdmol = copy.deepcopy(meta_info['ori_rdmol'])
rdmol.RemoveAllConformers()
pos_ref = labels
pos_gen = G.ndata['rdkit_pos'].permute(1, 0, 2)
data_list.append((rdmol, pos_ref, pos_gen))
func = partial(evaluate_conf, useFF=True, threshold=config.eval.delta)
covs = []
mats = []
with multiprocessing.Pool(8) as pool:
for result in pool.starmap(func, tqdm(data_list, total=len(data_list))):
covs.append(result[0])
mats.append(result[1])
covs = np.array(covs)
mats = np.array(mats)
print('Coverage Mean: %.4f | Coverage Median: %.4f | Match Mean: %.4f | Match Median: %.4f' % \
(covs.mean(), np.median(covs), mats.mean(), np.median(mats)))
if __name__ == '__main__':
main()