forked from hankook/AugSelf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_feature_invariance.py
403 lines (329 loc) · 15.3 KB
/
transfer_feature_invariance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from argparse import ArgumentParser
from collections import defaultdict
from functools import partial
from pathlib import Path
import ignite.distributed as idist
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch import cosine_similarity
from cond_utils import AugProjector, AUG_STRATEGY, AUG_HN_TYPES, AUG_INJECTION_TYPES
from datasets import load_datasets_for_cosine_sim
from resnets import load_backbone_out_blocks
from transforms import extract_aug_descriptors, RandomResizedCrop
from utils import Logger, get_engine_mock
from models import load_backbone, load_mlp, load_ss_predictor
import torch.nn.functional as F
PROJ_OUT = "projector_out"
PROJ_OUT_MIXED = "projector_out_mixed_descriptors"
BKB_OUT = "backbone_out"
MLP = "mlp"
AUG_COND = "aug_cond"
proj_sims = defaultdict(list)
def load_projector(args, ckpt):
projector_type = None
projector_kwargs = None
if "moco-" in args.origin_run_name:
projector_kwargs = dict(
n_in=args.num_backbone_features,
n_hidden=args.num_backbone_features,
n_out=128,
num_layers=2,
last_bn=False
)
elif "mocov3" in args.origin_run_name:
projector_kwargs = dict(
n_in=args.num_backbone_features,
n_hidden=4096,
n_out=256,
num_layers=3,
last_bn=True,
last_bn_affine=False
)
elif "simsiam" in args.origin_run_name:
projector_kwargs = dict(
n_in=args.num_backbone_features,
n_hidden=2048,
n_out=2048,
num_layers=3,
last_bn=True
)
elif "simclr" in args.origin_run_name:
projector_kwargs = dict(
n_in=args.num_backbone_features,
n_hidden=args.num_backbone_features,
n_out=128,
num_layers=2,
last_bn=False
)
elif "byol" in args.origin_run_name:
projector_kwargs = dict(
n_in=args.num_backbone_features,
n_hidden=4096,
n_out=256,
num_layers=2,
last_bn=False
)
elif "barlow_twins" in args.origin_run_name:
projector_kwargs = dict(
n_in=args.num_backbone_features,
n_hidden=8192,
n_out=8192,
num_layers=3,
last_bn=True,
last_bn_affine=False,
)
aug_projector_kwargs = None
if projector_kwargs is not None:
aug_projector_kwargs = dict(
args=args,
proj_out_dim=projector_kwargs["n_out"],
proj_depth=projector_kwargs.get("num_layers", 2),
proj_hidden_dim=projector_kwargs.get("n_hidden"),
projector_last_bn=projector_kwargs.get("last_bn", False),
projector_last_bn_affine=projector_kwargs.get("last_bn_affine", False)
)
try:
try:
projector = load_mlp(**projector_kwargs)
projector.load_state_dict(ckpt["projector"])
projector_type = MLP
except Exception as e:
print(f"Could not load raw mlp projector bc of {e}. Trying AugProjector.")
# TODO load args from wandb or args.json
framework, architecture, *rest = args.origin_run_name.split("-")
print(f"Parsing #1: {framework=}, {architecture=}, {rest=}")
try:
dataset, aug_treatment, depth, width, inj_type, *rest = "-".join(rest).split("_")
print(f"Parsing #2: {dataset=}, {aug_treatment=}, {depth=}, {width=}, {inj_type=}, {rest=}")
except:
dataset, aug_treatment, depth, width, inj_type = "imagenet100", "mlp", 6, 64, "proj-none"
print(f"Parsing #2 failed, trying defaults: {dataset=}, {aug_treatment=}, {depth=}, {width=}, {inj_type=}")
args.aug_treatment = aug_treatment
args.aug_hn_type = AUG_HN_TYPES.mlp
args.aug_nn_depth = int(depth)
args.aug_nn_width = int(width)
args.aug_cond = ["crop", "color", "color_diff", "flip", "blur", "grayscale"]
args.aug_inj_type = inj_type
projector = AugProjector(**aug_projector_kwargs)
projector.load_state_dict(ckpt["projector"])
projector_type = AUG_COND
build_model = partial(idist.auto_model, sync_bn=True)
projector = build_model(projector)
print(f"loaded projector", projector_type)
return projector_type, projector
except Exception as e:
print(f"Could not load any projector bf of {e}")
return projector_type, None
def infonce_loss(ft_1, ft_2, device, T: float = 0.2):
fn_r = F.normalize(ft_1)
ft_r = F.normalize(ft_2)
logits = torch.einsum('nc,mc->nm', [fn_r, ft_r]) / T
N = logits.shape[0]
labels = torch.arange(N, dtype=torch.long).to(device)
return F.cross_entropy(logits, labels) * (2 * T)
def self_distill_loss(ft_1, ft_2, device=None):
return F.cosine_similarity(ft_1, ft_2.detach(), dim=-1).mean().mul(-1)
def cca_loss(
ft_1, ft_2,
device=None,
bt_lambda: float = 0.0051,
):
def off_diagonal(x):
# return a flattened view of the off-diagonal elements of a square matrix
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
c = ft_1.T @ ft_2
c = c / len(ft_1)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
return on_diag + bt_lambda * off_diag
def main(local_rank, args):
cudnn.benchmark = True
device = idist.device()
logdir = Path(args.ckpt).parent
args.origin_run_name = logdir.name
logger = Logger(
logdir=logdir, resume=True, wandb_suffix=f"feat_inv-{args.dataset}", args=args,
job_type="eval_feature_invariance"
)
# DATASETS
datasets = load_datasets_for_cosine_sim(
dataset=args.dataset,
pretrain_data=args.pretrain_data,
datadir=args.datadir,
)
build_dataloader = partial(idist.auto_dataloader,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
pin_memory=True)
testloader = build_dataloader(datasets['test'], drop_last=False)
transforms_dict = datasets["transforms"]
ckpt_path = args.ckpt
engine_mock = get_engine_mock(ckpt_path=ckpt_path)
logger.log_msg(f"Evaluating {ckpt_path}")
ckpt = torch.load(ckpt_path, map_location=device)
backbone = load_backbone_out_blocks(args)
backbone.load_state_dict(ckpt['backbone'])
build_model = partial(idist.auto_model, sync_bn=True)
backbone = build_model(backbone)
projector_type, projector = load_projector(args, ckpt)
# EXTRACT FROZEN FEATURES
logger.log_msg('collecting features ...')
t_name_to_b_name_to_positive_sims = defaultdict(
lambda: defaultdict(list)
)
t_name_to_b_name_to_negative_sims = defaultdict(
lambda: defaultdict(list)
)
t_name_to_b_name_to_diff_sims = defaultdict(
lambda: defaultdict(list)
)
t_name_to_b_name_to_infonce = defaultdict(lambda : defaultdict(list))
t_name_to_b_name_to_self_distill = defaultdict(lambda : defaultdict(list))
t_name_to_b_name_to_cca = defaultdict(lambda : defaultdict(list))
rrc = RandomResizedCrop(224, scale=(0.2, 1.0))
identity = transforms_dict["identity"]
with torch.no_grad():
for i, (X, _) in enumerate(testloader):
X_transformed = {
t_name: t(X) for (t_name, t) in transforms_dict.items()
}
X_crops_and_params = [rrc(x) for x in X]
crop_params = torch.stack([p for (_, p) in X_crops_and_params])
X_crop = torch.stack([x for (x, _) in X_crops_and_params])
X_crop = identity(X_crop) #norm
X_transformed["crop"] = X_crop
X_norm = X_transformed.pop("identity")
bs = X_norm.shape[0]
feats_norm = backbone(X_norm.to(device))
if projector_type is not None:
if projector_type == MLP:
feats_norm[PROJ_OUT] = F.normalize(projector(feats_norm[BKB_OUT]))
elif projector_type == AUG_COND:
fake_crop_params = torch.cat([torch.zeros(bs, 2), torch.ones(bs, 2)], dim=1)
aug_desc = dict()
for (t_name, t) in transforms_dict.items():
assert t_name != "crop"
aug_desc.update(
extract_aug_descriptors(
t,
fake_crop_params
)
)
computed_crop_params = extract_aug_descriptors([], crop_params)["crop"]
aug_desc["flip"] = torch.ones_like(aug_desc["flip"])
aug_keys = sorted(aug_desc.keys())
t_to_aug_descriptors = dict()
for t_name in transforms_dict.keys():
augs_to_search_in = ["crop", t_name] if t_name != "color" else ["crop", t_name, "color_diff"]
t_to_aug_descriptors[t_name] = torch.cat(
[
(aug_desc[k] if k in augs_to_search_in else torch.zeros_like(aug_desc[k]))
for k in aug_keys
],
dim=1
).to(device)
augs_mixed_to_search_in = augs_to_search_in
if t_name in ["flip", "grayscale"]:
augs_mixed_to_search_in = ["crop"]
t_to_aug_descriptors[f"{t_name}_mixed"] = torch.cat(
[
(aug_desc[k] if k in augs_mixed_to_search_in else torch.zeros_like(aug_desc[k]))
for k in aug_keys
],
dim=1
).to(device)
t_to_aug_descriptors["crop"] = t_to_aug_descriptors["crop_mixed"]= torch.cat(
[
(computed_crop_params if k =="crop" else torch.zeros_like(aug_desc[k]))
for k in aug_keys
],
dim=1
).to(device)
feats_norm[PROJ_OUT] = F.normalize(
projector(feats_norm[BKB_OUT], t_to_aug_descriptors["identity"])
)
feats_norm[PROJ_OUT_MIXED] = F.normalize(
projector(feats_norm[BKB_OUT], t_to_aug_descriptors["identity"])
)
else:
raise NotImplementedError(projector_type)
for t_name, X_t in X_transformed.items():
feats_t = backbone(X_t.to(device))
if projector_type == MLP:
feats_t[PROJ_OUT] = F.normalize(projector(feats_t[BKB_OUT]))
elif projector_type == AUG_COND:
feats_t[PROJ_OUT] = F.normalize(
projector(feats_t[BKB_OUT], t_to_aug_descriptors[t_name])
)
feats_t[PROJ_OUT_MIXED] = F.normalize(
projector(feats_t[BKB_OUT], torch.flip(t_to_aug_descriptors[f"{t_name}_mixed"], [0]))
)
assert feats_norm.keys() == feats_t.keys()
for block_name, fn in feats_norm.items():
ft = feats_t[block_name]
fn_r = fn.reshape(bs, -1)
ft_r = ft.reshape(bs, -1)
positive_sim = cosine_similarity(fn_r, ft_r).mean().item()
if block_name in [PROJ_OUT, PROJ_OUT_MIXED]:
proj_sims[f"{block_name}/{t_name}"].extend(cosine_similarity(fn_r, ft_r).detach().cpu().numpy().reshape(-1))
negative_sim = cosine_similarity(
fn_r,
torch.flip(ft_r, [0])
).mean().item()
t_name_to_b_name_to_positive_sims[t_name][block_name].append(positive_sim)
t_name_to_b_name_to_negative_sims[t_name][block_name].append(negative_sim)
t_name_to_b_name_to_diff_sims[t_name][block_name].append(positive_sim - negative_sim)
infonce = infonce_loss(fn_r, ft_r, device)
t_name_to_b_name_to_infonce[t_name][block_name].append(infonce.item())
self_distill = self_distill_loss(fn_r, ft_r)
t_name_to_b_name_to_self_distill[t_name][block_name].append(self_distill.item())
try:
cca = cca_loss(fn_r, ft_r)
t_name_to_b_name_to_cca[t_name][block_name].append(cca.item())
except:
pass
if (i+1) % args.print_freq == 0:
logger.log_msg(
f'{i + 1:3d} | {block_name} | {t_name} | pos: {np.mean(t_name_to_b_name_to_positive_sims[t_name][block_name]):.4f} | neg: {np.mean(t_name_to_b_name_to_negative_sims[t_name][block_name]):.4f})'
)
metrics = dict()
for (sim_kind, sim_dict) in [
("positive", t_name_to_b_name_to_positive_sims),
("negative", t_name_to_b_name_to_negative_sims),
("diff", t_name_to_b_name_to_diff_sims),
("infonce", t_name_to_b_name_to_infonce),
("self-distill", t_name_to_b_name_to_self_distill),
("cca", t_name_to_b_name_to_cca),
]:
for t_name, b_name_to_sim in sim_dict.items():
for block_name, sims in b_name_to_sim.items():
mean_sim = np.mean(sims)
std_sim = np.std(sims)
logger.log_msg(f'{sim_kind} {args.dataset} invariance of {block_name} to {t_name}: {mean_sim:.4f}±{std_sim:.4f}')
metrics[f"test_feature_invariance/{args.dataset}/{block_name}/{t_name}/{sim_kind}"] = mean_sim
if block_name in [PROJ_OUT, PROJ_OUT_MIXED]:
metrics[f"test_feature_invariance/{args.dataset}/{block_name}/{t_name}/positive_sims"] = np.array(proj_sims[f"{block_name}/{t_name}"])
logger.log(
engine=engine_mock, global_step=i,
**metrics
)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--ckpt', type=str, required=True)
parser.add_argument('--pretrain-data', type=str, default='stl10')
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--datadir', type=str, default='/data')
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--model', type=str, default='resnet18')
parser.add_argument('--print-freq', type=int, default=100)
parser.add_argument('--distributed', action='store_true')
args = parser.parse_args()
args.backend = 'nccl' if args.distributed else None
args.num_backbone_features = 512 if args.model.endswith('resnet18') else 2048
with idist.Parallel(args.backend) as parallel:
parallel.run(main, args)