forked from Shivi91/Rosalind-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path079_GCON.py
56 lines (43 loc) · 1.83 KB
/
079_GCON.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python
'''
A solution to a ROSALIND bioinformatics problem.
Problem Title: Global Alignment with Constant Gap Penalty
Rosalind ID: GCON
Rosalind #: 079
URL: http://rosalind.info/problems/gcon/
'''
from scripts import BLOSUM62, ReadFASTA
def global_alignment_with_constant_gap(v, w, scoring_matrix, sigma):
'''Returns the global alignment score of v and w with constant gap peantaly sigma subject to the scoring_matrix.'''
from numpy import zeros
# Initialize the matrices.
S_lower = zeros((len(v)+1, len(w)+1), dtype=int)
S_middle = zeros((len(v)+1, len(w)+1), dtype=int)
S_upper = zeros((len(v)+1, len(w)+1), dtype=int)
# Initialize the edges with the given penalties.
for i in xrange(1, len(v)+1):
S_lower[i][0] = -sigma
S_middle[i][0] = -sigma
S_upper[i][0] = -10*sigma
for j in xrange(1, len(w)+1):
S_upper[0][j] = -sigma
S_middle[0][j] = -sigma
S_lower[0][j] = -10*sigma
# Fill in the scores for the lower, upper, and middle matrices.
for i in xrange(1, len(v)+1):
for j in xrange(1, len(w)+1):
S_lower[i][j] = max([S_lower[i-1][j], S_middle[i-1][j] - sigma])
S_upper[i][j] = max([S_upper[i][j-1], S_middle[i][j-1] - sigma])
S_middle[i][j] = max([S_lower[i][j], S_middle[i-1][j-1] + scoring_matrix[v[i-1], w[j-1]], S_upper[i][j]])
# Get the maximum score.
max_score = S_middle[len(v)][len(w)]
return max_score
if __name__ == '__main__':
# Parse the two input protein strings.
s, t = [fasta[1] for fasta in ReadFASTA('data/rosalind_gcon.txt')]
# Get the alignment score.
score = str(global_alignment_with_constant_gap(s, t, BLOSUM62(), 5))
# Print and save the answer.
print score
with open('output/079_GCON.txt', 'w') as output_data:
output_data.write(score)